
Ad van ced co u rse – ANL , Ju n e 2023

FLUKA user routines II:
MGDRAW and its entries

Outline

• Introduction

• Example user needs

• What are MGDRAW and USERDUMP?

• MGDRAW: standard versus user implementations

• Overview of the MGDRAW subroutine and its entries

• The USERDUMP card

• MGDRAW entries: MGDRAW
• Example: Plotting trajectories with Flair

• MGDRAW entries: ENDRAW, SODRAW, BXDRAW, EEDRAW
• Example: Count particles crossing a boundary for each primary event with BXDRAW and EEDRAW

• MGDRAW entries: USDRAW
• USDRAW: Get secondary particle information

• Example: Print reaction final state with USDRAW

• Words of caution on MGDRAW use

• Summary

User routines II: MGDRAW 2

Introduction

• The FLUKA user can be interested in quantities at a high level of granularity, while the standard FLUKA

cards provide quantities collected along the entire run.

• With MGDRAW, FLUKA offers the user with capability to dump information for “events” of interest.

This lecture gives a basic introduction on the MGDRAW user routine, what it offers, how to use it.

User routines II: MGDRAW 3

Selection of particles

trajectories in a 450 GeV

proton on Al simulation

Example user needs

Several user needs are not covered by the standard cards presented in the FLUKA Beginner course.

One might for example want to:

• Perform a non-standard FLUKA scoring

While in general this is not recommended, because the available FLUKA scoring facilities are

reliable, efficient and well tested, there are special cases where a user-written scoring is necessary.

• Save details of FLUKA transport, for a new independent analysis.

• Perform some manipulation in an intermediate phase of Monte Carlo transport

The transport problem can be split into two (or more) sequential phases: (possibly post-processed)

output quantities from FLUKA transport can be re-injected as source of a consecutive FLUKA run.

Example: Splitting extension. Record all particles crossing a given boundary. Then, in a successive

run, sample repeatedly source particles from that record (with a SOURCE routine).

• Interface FLUKA to other radiation transport codes

• Visualize trajectories or events in a GUI

• FLUKA transport debugging

User routines II: MGDRAW 4

What are MGDRAW and USERDUMP?

• In all cases, the user would like to access information on “events” of interest.

The "event" can be a specific interaction, a boundary-crossing event, a local energy

deposition event, etc.

• MGDRAW is a FLUKA subroutine, which can provide information on the source

particles, trajectories, continuous and local (point-like) energy deposition events,

boundary-crossing events, as well as on user-defined events.

• NB: In the past, the expression “collision tape” was used, but it is slightly restrictive.

• MGDRAW can be activated by the FLUKA card: USERDUMP

When activated, MGDRAW subroutine (or its entries) is directly called from FLUKA code

core.

User routines II: MGDRAW 5

MGDRAW: standard versus user implementations

• Like every user subroutine, MGDRAW has a default implementation, which is an
integrated part of FLUKA source.
It is located in: src/user/mgdraw.f
If no user implementation is provided, it is the implementation to be called by FLUKA.

• If ever a user implementation is provided (mgdraw.f is modified by the user),
the user implementation is considered instead of the default one.
The user implementation is compiled and linked to create a custom executable, where the
user functions definitions will overwrite the default ones.
To help the user with a custom implementation, a skeleton is provided in:
src/user/mgdraw_empty.f

• As a rule of thumb, the user should always favour using the default FLUKA cards
(extensively debugged and cover most use cases!), or the default implementation, rather
than a dedicated implementation.

User routines II: MGDRAW 6

Overview of MGDRAW and its entries

• mgdraw.f contains 6 subroutines:

→ SODRAW: source particles [default implementation: dumps all]

→ MGDRAW: trajectories, and continuous energy losses [default implementation: dumps all]

→ ENDRAW: local (point-like) energy deposition events [default implementation: dumps all]

→ BXDRAW: boundary-crossing events [default implementation: empty]

→ USDRAW: user-defined dumps after interactions [default implementation: empty]

→ EEDRAW: end of events (1 event = 1 primary history) [default implementation: empty]

• These entries are called from the most important physical events happening during particle

transport, where relevant information is available and can be “observed”.

User routines II: MGDRAW 7

The USERDUMP card

• WHAT(1): ≥ 100.0 : General activation of FLUKA calls to MGDRAW and/or its entries

< 0.0: The default is reset, i.e., no dump is written.

= 0.0: Ignored

> 0.0 and < 100.0: Not allowed (legacy)!

• WHAT(2): Number of the unformatted output unit, when the MGDRAW default version is used

NB: When a user-implemented MGDRAW is used, the unit number can be defined by an

explicit Fortran OPEN statement in MGDRAW code.

Reminder: Avoid < 21.0 values (possible conflicts with Fluka pre-defined units).

(Default = 49.0)

User routines II: MGDRAW 8

Activates FLUKA calls to MGDRAW entries, in order to dump a collision tape. SDUM != UDQUENCH

* ..+....1....+....2....+....3....+....4....+....5....+....6....+....7..

USERDUMP 100. 2 name

The USERDUMP card

• WHAT(3): Selection of MGDRAW entries to be called (provided WHAT(1) ≥ 100).

See next slide.

• WHAT(4): ≥ 1.0: Activates calls to USDRAW and EEDRAW entries (provided WHAT(1) ≥ 100)

= 0.0: Ignored

< 0.0: Resets to default

• WHAT(5) – WHAT(6): Not used

• SDUM: Output file name (max. 10 characters).

NB: When a user-implemented MGDRAW is used, the user can define a longer name

by an explicit Fortran OPEN statement in the MGDRAW code.

User routines II: MGDRAW 9

Activates FLUKA calls to MGDRAW entries, in order to dump a collision tape. SDUM != UDQUENCH

* ..+....1....+....2....+....3....+....4....+....5....+....6....+....7..

USERDUMP 100. 2 name

The USERDUMP card

• WHAT(3): Selection of MGDRAW entries to be called (provided WHAT(1) ≥ 100)

(Default = 0)

≤ 0.0: Call to SODRAW every time a source particle is started, to MGDRAW at each

particle step and each continuous energy loss, to ENDRAW at each local energy loss, to

BXDRAW at each boundary crossing, and to EEDRAW at each end of event.

→ With default MGDRAW implementation: Source particles, trajectories, continuous and

local energy losses are ALL dumped.

≥ 7.0: No call to SODRAW, MGDRAW, ENDRAW, BXDRAW, EEDRAW (calls to

USDRAW and EEDRAW by WHAT(4) are unaffected).

→ With default MGDRAW implementation: Source particles, trajectories, continuous and

local energy losses are NOT dumped.

User routines II: MGDRAW 10

Activates FLUKA calls to MGDRAW entries, in order to dump a collision tape. SDUM != UDQUENCH

* ..+....1....+....2....+....3....+....4....+....5....+....6....+....7..

USERDUMP 100. 2 name

The USERDUMP card

• With Flair:

• Examples:

User routines II: MGDRAW 11

TYPE: is SDUM != UDQUENCH WHAT(2) SDUM

WHAT(3)WHAT(1) WHAT(4)

Write a binary file called "name", pre-connected to the default logical output unit 49, and containing all

trajectories and continuous energy losses.

* ..+....1....+....2....+....3....+....4....+....5....+....6....+....7..

USERDUMP 100. 49 2 name

Write a binary file called "MYSECS", pre-connected to the logical output unit 50, and containing user-

defined dumps after collisions, and ends of events.

* ..+....1....+....2....+....3....+....4....+....5....+....6....+....7..

USERDUMP 100. 50 7 1 MYSECS

SUBROUTINE MGDRAW (ICODE, MREG)

...

WRITE (IODRAW) NTRACK, MTRACK, JTRACK,

& SNGL (ETRACK), SNGL (WTRACK)

WRITE (IODRAW) (SNGL (XTRACK (I)), SNGL (YTRACK (I)),

& SNGL (ZTRACK (I)), I = 0, NTRACK),

& (SNGL (DTRACK (I)), I = 1, MTRACK),

& SNGL (CTRACK)

...

RETURN

MGDRAW entries: MGDRAW

User routines II: MGDRAW 12

MGDRAW (when activated) writes

by default, for each trajectory, the

following variables:

Trajectories and continuous energy losses

trackr.inc

default implementation

input variables:

output variables:

Example: plotting trajectories with Flair
• We want to visualize the particles trajectories within an event.

• MGDRAW allows the dump of trajectory information in a format compatible with Flair.

• We are going to rely on the default version of MGDRAW: no need to modify any code within mgdraw.f.

• (1) Activate MGDRAW calls

To do so, add a USERDUMP card to your project with trajectories dump enabled ("Traj&Cont losses").

It is advised to use a file name containing the word "dump" (for Flair to detect it easily in the Geometry tab).

• (2) Run your simulation (default FLUKA executable).

WARNING: Try with 1 primary first (output file size)!

• NB: You cannot "Process" dump files.

User routines II: MGDRAW 13

See Ex2 in exercise session.

We will follow this procedure together.

Note here the use of default MGDRAW.

User routines II: MGDRAW 14

Step 1: Select the Geometry tab.

Step 2: (optional) Clone an existing layer, and

rename it.

Step 3: Add a "Userdump" (active if filled black

box).

Step 4: Select the Userdump file created

by your FLUKA run (here, *_dump).

Step 5: Select particles of interest

(active <-> filled black box).

Step 6: Double-click on colour box to update

colour.

Step 7: Select the layer you were on at Step 2

in any window of your choice.

Example: plotting trajectories with Flair
(3) Follow the steps below in Flair, to draw

trajectories of interest in your geometry.​

MGDRAW entries: ENDRAW

User routines II: MGDRAW 15

Local (point-like) energy deposition events

ENTRY ENDRAW (ICODE, MREG, RULL, XSCO, YSCO, ZSCO)

...

WRITE (IODRAW) 0, ICODE, JTRACK,

& SNGL(ETRACK), SNGL(WTRACK)

WRITE (IODRAW) SNGL (XSCO),

& SNGL(YSCO), SNGL(ZSCO), SNGL(RULL)

...

RETURN

ENDRAW writes by default, for each

energy deposition point:

default implementation

output variables:

input variables:

MGDRAW entries: SODRAW

User routines II: MGDRAW 16

Source particles

ENTRY SODRAW

...

WRITE (IODRAW) -NCASE, NPFLKA,

& NSTMAX, SNGL (TKESUM), SNGL (WEIPRI)

...

! Default case

ELSE

WRITE (IODRAW) (ILOFLK(I),

& SNGL (TKEFLK(I)+AM(ILOFLK(I))),

& SNGL (WTFLK(I)), SNGL (XFLK (I)),

& SNGL (YFLK (I)), SNGL (ZFLK (I)),

& SNGL (TXFLK(I)), SNGL (TYFLK(I)),

& SNGL (TZFLK(I)), I = 1, NPFLKA)

END IF

RETURN

SODRAW (when activated)
writes by default, ​for each
source or beam particle:

flkstk.inc

default implementation

output variables:

input variables: none

output variables:

ENTRY BXDRAW (ICODE, MREG,

& NEWREG, XSCO, YSCO, ZSCO)

RETURN

MGDRAW entries: BXDRAW

User routines II: MGDRAW 17

BXDRAW (when activated) is called at each boundary crossing.

There is no default output: any output must be supplied by the user.

EEDRAW (when activated) is called at the end of each FLUKA event, or primary history.

There is no default output: any output must be supplied by the user.

MGDRAW ENTRIES: EEDRAW

Boundary-crossing events

End of events

(1 FLUKA event = 1 primary history)

ENTRY EEDRAW (ICODE)

RETURN

default implementation (empty)

default implementation (empty)

input variables:

input variables:

Example: Count particles crossing a surface

for each primary event with BXDRAW and EEDRAW
We want to dump, for each primary history, the number of photons crossing a given boundary.

It is not possible to simply rely on default USRBDX: we would get the total number of photons crossing

the boundary for the entire run (and not per primary!).

BXDRAW allows us to study boundary-crossing, and EEDRAW to perform action at the end of each

primary history.

We cannot use their default versions in mgdraw.f, because they are empty:

we need to customize BXDRAW and EEDRAW to our needs.

(1) Activate BXDRAW and EEDRAW calls.

User routines II: MGDRAW 18

* ..+....1....+....2....+....3....+....4....+....5....+....6....+....7..

USERDUMP 100. 3.

Example: Count particles crossing a surface

for each primary event with BXDRAW and EEDRAW

User routines II: MGDRAW 19

! Boundary crossing

entry BXDRAW(icode, mreg, newreg, xsco, ysco, zsco)

! Initialization (only done once)

if (first_run) then

! Converting region names into region numbers

! Region names must be padded with SPACEs up to 8 characters

call GEON2R("TARG1 ", region_number_out, IERR)

if (IERR /= 0) call FLABRT("bxdraw",

& "Failed region name conversion.")

call GEON2R("TARG2 ", region_number_in, IERR)

if (IERR /= 0) call FLABRT("bxdraw",

& "Failed region name conversion.")

first_run = .false.

end if

! Count optical photons only if they cross

! between the two specified regions

if (MREG == region_number_out .and. NEWREG == region_number_in

& .and. JTRACK == -1) then

photon_counter = photon_counter + 1

end if

return

! End of event (= primary history)

entry EEDRAW(icode)

! Write current primary number

! and number of counted photons

write(80, *) NCASE, photon_counter

! Reset photon counter for the next primary

photon_counter = 0

return

! Variables initialization

! (Put this inside MGDRAW subroutine, but

outside the BXDRAW / EEDRAW entries).

logical, save :: first_run = .true.

integer, save :: region_number_out,

region_number_in

integer, save :: photon_counter = 0

(2) Modify BXDRAW and EEDRAW (in

mgdraw.f)

user implementation

user implementation

MGDRAW entries: USDRAW

User routines II: MGDRAW 20

USDRAW (when activated) is called after

each particle interaction.

There is no default output:

any output must be supplied by the user.

User-defined dumps after interactions

ENTRY USDRAW (ICODE, MREG,

& XSCO, YSCO, ZSCO)

...

! No output by default:

RETURN

default implementation (empty)

input variables:

USDRAW: get secondaries information

• Secondaries properties are available in COMMON GENSTK (indices 1 to NP: one per secondary).

The surviving primary properties, if any, are also in GENSTK.

Exception: delta rays produced by heavy ions. The properties of the single electron produced

are available in COMMON EMFSTK, at index NP.

• Heavy evaporation fragments

(deuterons, 3H, 3 He, α, with JTRACK ID equal respectively to -3, -4, -5, -6)

+ fission/fragmentation products generated in an inelastic interaction (with JTRACK = -7 to -12),

are available in COMMON FHEAVY.

Exception: heavy fragments from ion-ion interactions are in GENSTK.

• The properties of the target nucleus (IBTAR, ICHTAR...)

+ residual nucleus, if any (IBRES, ICHRES...)

are in COMMON RESNUC.

NB: This COMMON is not included in USDRAW by default.

• EMF particles: the code places them (temporarily!) in GENSTK, before calling USDRAW.

User routines II: MGDRAW 21

Filtering: inelastic interactions of a primary proton only

• Obviously can adapt to use case:

• reaction code (ICODE)

• projectile (JTRACK), region (MREG)

• primary history index (NCASE)

• generation number (LTRACK)...

Loop on GENSTCK secondaries

• Start from NP0+1 to skip the primary when present.

• NB: When the primary is not present, NP0=0.

Loop on heavy fragments

Heavy residue

End filtering

User routines II: MGDRAW 22

entry USDRAW(icode, mreg, xsco, ysco, zsco)

if (icode .eq. 101 .and. JTRACK .eq. 1 .and. LTRACK .eq. 1) then

write (90, *)

write (90, *) 'PROJECTILE: id = ', JTRACK,

& ', kE[GeV] = ', ETRACK, ', dirZ = ', CXTRCK

write (90, *) 'Interaction id = ', ICODE,

& ', in region = ', MREG

write(90,*) 'NUMBER OF GENSTCK SECONDARIES = ', NP-NP0

do jp = NP0+1, NP

write(90,*) 'Sec: id = ', KPART(jp), ', kE[GeV] = ', TKI(jp)

end do

write(90,*) 'NUMBER OF HEAVY FRAGMENTS = ', NPHEAV

do jp = 1, NPHEAV

write(90,*) 'A = ', IBHEAV(KHEAVY(jp)),

& ', Z = ', ICHEAV(KHEAVY(jp)), ', kE[GeV] = ', TKHEAV(jp)

end do

if (IBRES .gt. 0) then

write(90,*) 'RESIDUAL NUCLEUS A = ', IBRES,

& ', Z = ', ICRES, ', kE[GeV] = ', EKRES

end if

end if

return

See genstck.inc

for more properties

fheavy.inc

resnuc.inc

User implementation in mgdraw.f

Example: print reaction final state with USDRAW

See Ex3 in exercise session.

Words of caution on MGDRAW use

• When MGDRAW should be used with care:

When MGDRAW is used for event-by-event scoring (an event being here a full primary history),

it should NOT be used when non-physical transformations have been performed within the event:

• Biasing is requested (non-analogue run).

• Groupwise low-energy neutron treatment (E<20 MeV) is involved (unless one has a deep

knowledge of the peculiarities of their transport and quantities, e.g. kerma, etc.).

• Warning on output file size

• Be careful: the MGDRAW output file can (very) quickly exceed several GBs.

This is because the number of MGDRAW calls is extensive: MGDRAW can be called after every

particle step, or border crossing, or interaction etc.

Exact file size is obviously dependent on your simulation and your MGDRAW implementation (if any).

Example: 450 GeV proton on a 400cm x 600cm Al target, default MGDRAW with "Traj&Cont losses",

1 cycle with only 2 primaries:

• Dump file size is ~350 MB!

User routines II: MGDRAW 23

Summary

• One should always favour using the default FLUKA cards rather than the user routines,

and the default user routines implementation rather than a custom implementation.

• The MGDRAW routine is widely used to access information on specific "events" of interest:

it increases the level of granularity of the information accessible to the user.

The "event" can be a specific interaction, a boundary-crossing event, a local energy deposition event, etc.

• With the default mgdraw.f implementation, MGDRAW allows to dump information on trajectories,

and continuous energy losses, SODRAW on source particles, ENDRAW on local (point-like) energy

deposition events, while BXDRAW, USDRAW, and EEDRAW are empty.

• The user can customize mgdraw.f (potentially starting from mgdraw_empty.f template): he can tailor

to his needs information dump in MGDRAW (trajectories, and continuous energy losses),

SODRAW (source particles), ENDRAW (point-like energy deposition events),

BXDRAW (boundary-crossing events), USDRAW (interactions), EEDRAW (end of primary histories).

• MGDRAW calls need to be activated by a FLUKA input card: USERDUMP.

• Beware of limitations on MGDRAW use.

24User routines II: MGDRAW

