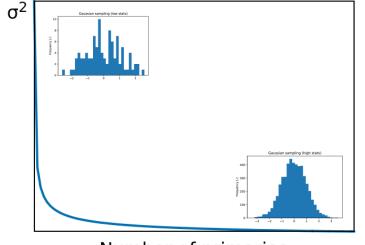


Biasing techniques in FLUKA

Beyond basics


Advanced course – ANL, June 2023

What is biasing?

• It is the use of "Variance Reduction Technique(s)" that...

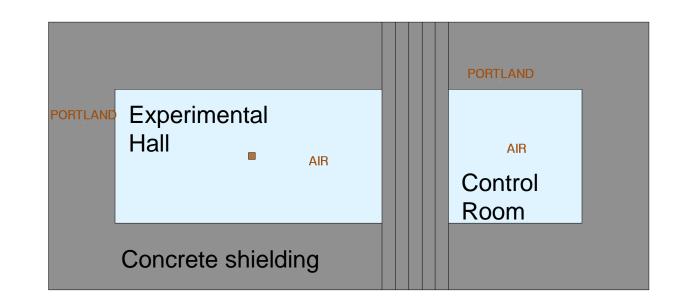
distort distributions and apply weights to particles to correct for the bias

- VRTs aim at reducing variance σ^2 or CPU time t
- Usually, reducing one quantity increases the other
- Usually, more than one VRT is applied at the same time

- Number of primaries
- Goodness of simulations can be estimated with a Figure of Merit: FOM=1/($\sigma^2 \cdot t$) the larger the better: less time and smaller uncertainty

Non-biased Monte Carlo simulations

Characteristics


Samples uniformly from

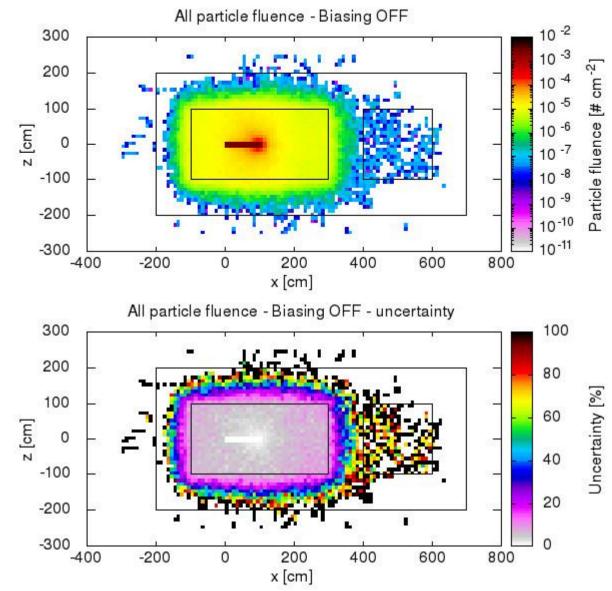
the phase-space distribution

- Preserves correlations
- Reproduces fluctuations

Drawbacks

- Converges slowly
- Rare events are... "rare"

Non-biased Monte Carlo simulations


200000 primaries

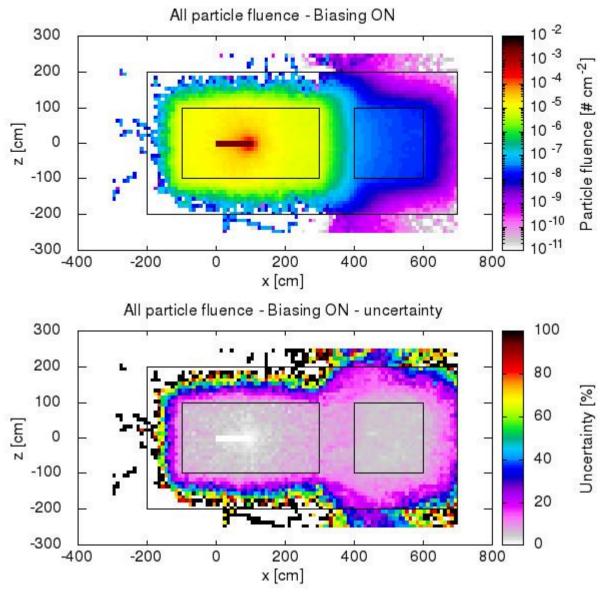
Characteristics

- Samples uniformly from the phase-space distribution
- Preserves correlations
- Reproduces fluctuations

Drawbacks

- Converges slowly
- Rare events are... "rare"

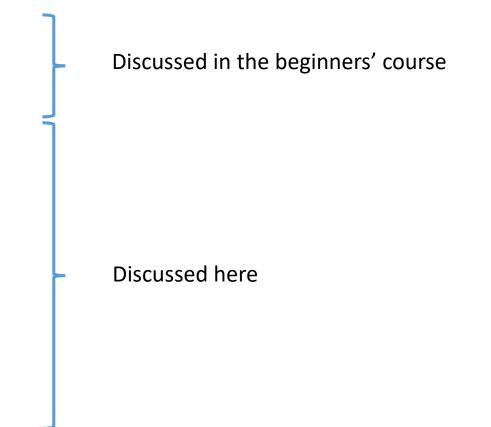
Biased Monte Carlo simulations


200000 primaries

Characteristics

- Samples from distorted distributions
- Converges "quickly"

Drawbacks


- Cannot reproduce fluctuations and correlations
- Requires active reasoning and experience
- Requires user's time to be implemented

Biasing techniques in FLUKA

- Region Importance Biasing (BIASING)
- Mean Free Path Biasing (LAM-BIAS)
- Leading Particle Biasing (EMF-BIAS)
- Multiplicity Tuning (BIASING)
- Lifetime (LAM-BIAS)
- Decay-length Biasing (LAM-BIAS)
- Weight Windows (WW-FACTO, WW-THRES)
- User defined biasing (BIASING, usimbs.f)

Input card: **EMF-BIAS**

- Input card: EMF-BIAS
- Applies only to electromagnetic interactions of electrons, positrons, and photons
- Interaction processes to be affected are selected one by one (see next slide)
- Two electromagnetic particles in the final state, only one is retained
- Applies only within selected regions
- Survival probability p proportional to energy
- Weight is adjusted w' = w / p
- Generally used to speed up simulations of electromagnetic showers
- Few surviving low-energy particles might generate strong fluctuations
- Multiple EMF-BIAS cards are allowed

Input card: EMF-BIAS

- Туре
 - LPBEMF Leading Particle Biasing for ElectroMagnetic interaction in Fluka
 - LAMBEMF LAMbda Biasing for ElectroMagnetic Fluka
 - LAMBBREM LAMbda Biasing for BREMsstrahlung interactions
 - LBRREMF Lambda Biasing w/ Russian Roulette for ElectroMagnetic Fluka
 - LBRRBREM Lambda Biasing w/ Russian Roulette for BREMsstrahlung interactions
 - Lambda Biasing is not discussed in the course, details are found in the manual

Input card: EMF-BIAS

- Type
 - LPBEMF
 - ...
- Ethr e-e+ Ethr γ
 - Threshold below which LPB applies
 - For electrons: E = kinetic energy
 - For positrons: E = total energy (kinetic energy plus rest mass energy)
- Processes to which LPB applies
 - Self-explanatory
 - "Old bremss." is a relic of the past for backward compatibility
- Reg to Reg Step
 - Standard FLUKA region selection

Input card: EMF-BIAS

- Type
 - LPBEMF
- Ethr e-e+ Ethr γ
 - Threshold below which LPB applies (*)
- Processes to which LPB applies
 - Self-explanatory
- Reg to Reg Step
 - Standard FLUKA region selection

Example explanation:

LPB is applied during bremsstrahlung and pair production processes, within every other region (step=2) between region=a2 and region=a8, to photons, electrons, and positrons below a 20 MeV (*) energy threshold

			•
EMF-BIAS	Type: LPBEMF 🔻	Ethr e-e+: 0.02	Ethr γ: 0.02
Old bremss.: off 🔻	Bremsstrahlung: On 🔻	Pair Prod.: On 🔻	e+ ann @rest: off 🔻
Compton: off v	Bhabha&Moller: off v	Photo-electric: off 🔻	e+ ann @flight: off 🔻
	Reg: a2 v	to Reg: a8 v	Step: 2

*Beware of the different thresholds for electrons and positrons (see previous slide)

Multiplicity Tuning

Input card: **BIASING**

Multiplicity Tuning

- Input card: **BIASING**
- Large number of secondaries produced in hadronic interactions
- "Leading Particle Biasing for hadrons", i.e. reduces the number of secondaries
 - Very useful for high-energy heavy ions simulations
- Hadronic secondaries have similar characteristics
- A RR (Russian Roulette) reduction factor is defined
 - E.g. RR=0.5 means that 50% of the secondaries are discarded
- Weight is adjusted
- Applied within selected regions
- Multiple **BIASING** cards are allowed

Multiplicity Tuning

Input card: **BIASING**

- Type
 - Hadrons&muons
- Reg to Reg Step
 - Standard FLUKA region selection
- Imp
 - Importance of the selected region(s)

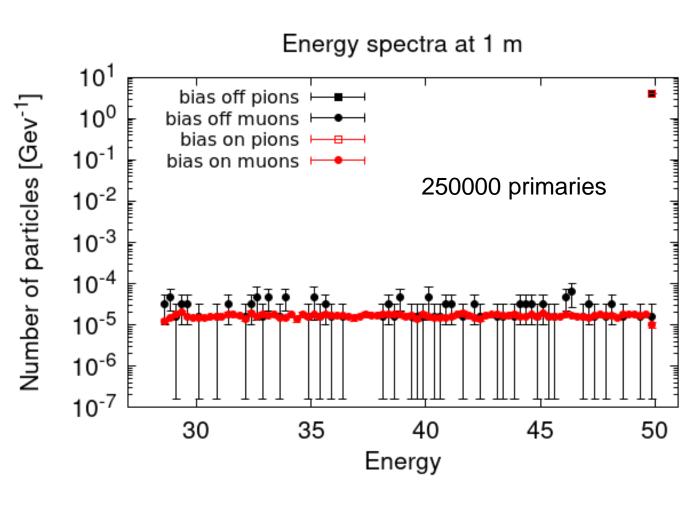
Example explanation:

Hadrons and muons secondaries generated within all regions between *region=a2* and *region=a4* have a 50% probability (*RR=0.5*) to survive with doubled particle weight

< BIASING	Type: Hadrons & Muons 🔻	RR: 0.5	Imp:
Opt: v	Reg: a2 ▼	to Reg: a4 🔻	Step: 1

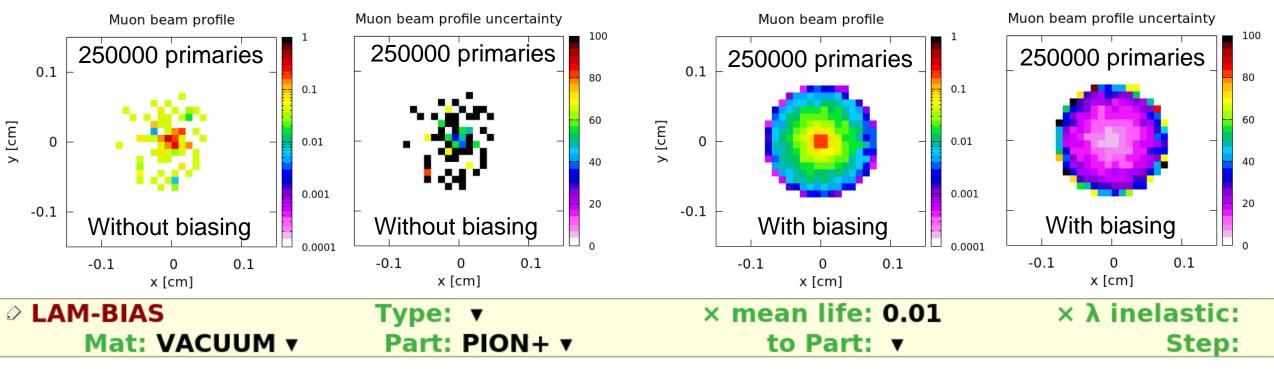
- Input card: LAM-BIAS
- Allows to modify the lifetime of unstable particles by a given factor
- Weight is adjusted
- It can be applied to specific materials and/or specific particles
- Multiple LAM-BIAS cards are allowed

Input card: LAM-BIAS


- Type
 - <empty>
- × mean life
 - Lifetime correction factor (particle rest frame)
- $\times \lambda$ inelastic
 - Doesn't apply in this use-case
- Mat
 - Material where the correction factor applies
- Part to Part Step
 - Standard FLUKA particle selection

Example explanation:

Lifetime of *positive pions and positive muons*, *in air*, are multiplied by a correction factor 0.02


× mean life: 0.02 \times λ inelastic: LAM-BIAS Type: v Mat: AIR v Part: MUON+ v to Part: PION+ v Step: 3 Biasing

- Primaries: 50 GeV pions, π^+
- In vacuum
- Spectra of pions and muons @1m
- Black: no biasing applied
- Red: Lifetime biasing applied

- Primaries: 50 GeV pions, π^+
- In vacuum
- Transverse distribution of muons @1m

- Input card: LAM-BIAS
- Allows to set the decay-length of unstable particles
- Users have to provide the new decay-length in the laboratory in cm
- Weight is adjusted
- It can be applied to specific materials and/or specific particles
- Multiple LAM-BIAS cards are allowed

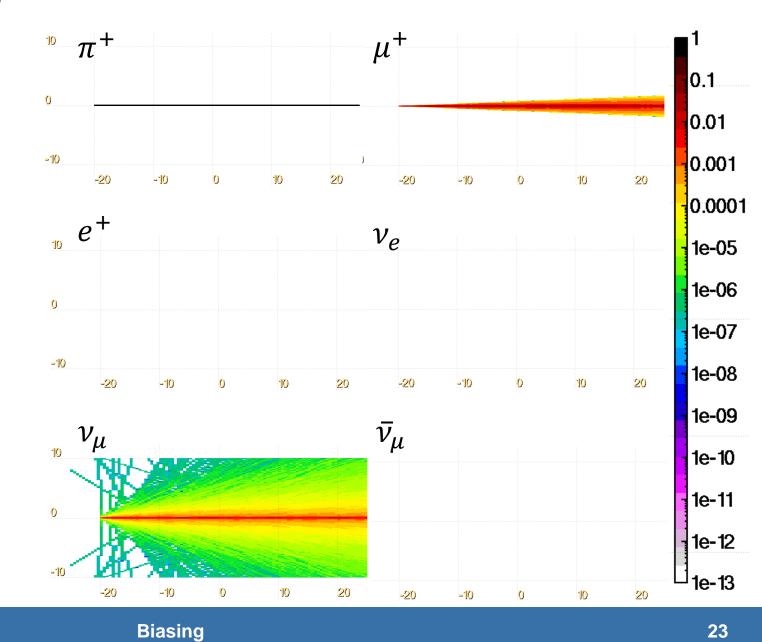
Input card: LAM-BIAS

- Type
 - GDECAY
- </>>
 - Decay-length in the laboratory frame [cm]
- × λ inelastic
 - Doesn't apply in this use-case
- Mat
 - Material where the correction factor applies
- Part to Part Step
 - Standard FLUKA particle selection

	1		↓	
LAM-BIAS	Type: GDECAY 🔻	<λ>: 0.02	× λ inelastic:	
Mat: AIR 🔻	Part: MUON+ 🔻	to Part: MUON- 🔻	Step:	
FLUKA		Biasing		22

Example explanation:

laboratory frame

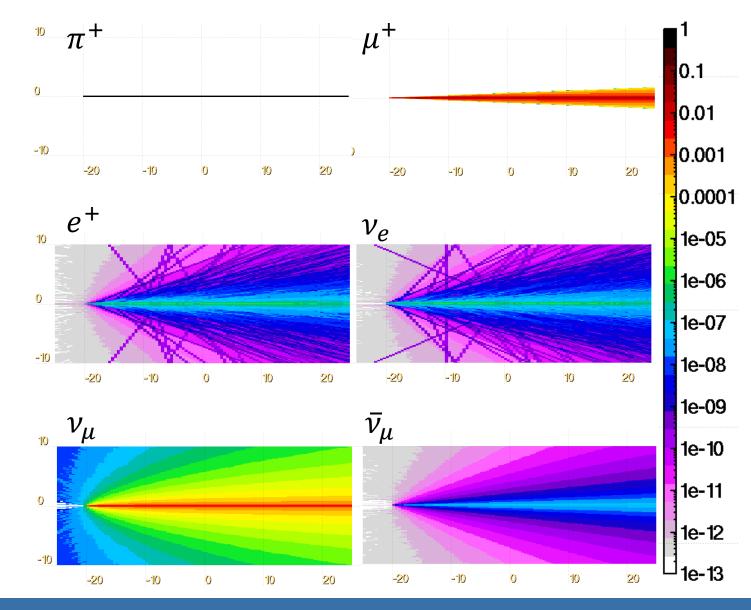

Decay-length of *positive and negative*

muons, in air, are set to 0.02 cm in the

Input card: LAM-BIAS

- Primaries: 1 GeV pions, π^+
- In vacuum
- Fluences of $\pi^+, \mu^+, e^+, \nu_e, \nu_\mu, \bar{\nu}_\mu$
- BR $(\pi^+ \rightarrow \mu^+ \nu_\mu) \approx 0.9999$
- BR($\pi^+ \rightarrow e^+ \nu_e$) ≈ 0.0001
- BR($\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu$) ≈ 1
- No biasing applied

250000 primaries



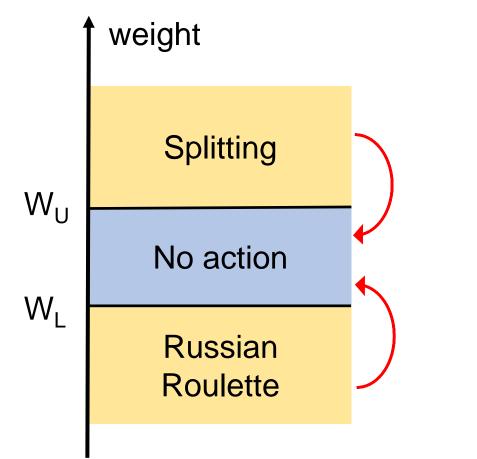
Input card: LAM-BIAS

- Primaries: 1 GeV pions, π^+
- In vacuum
- Fluences of $\pi^+, \mu^+, e^+, \nu_e, \nu_\mu, \bar{\nu}_\mu$
- BR $(\pi^+ \rightarrow \mu^+ \nu_\mu) \approx 0.9999$
- $\mathsf{BR}(\pi^+ \rightarrow e^+ \nu_e) \approx 0.0001$
- $\mathsf{BR}(\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu) \approx 1$
- Decay-length biasing applied
 - 5 cm for both π^+ and μ^+

250000 primaries

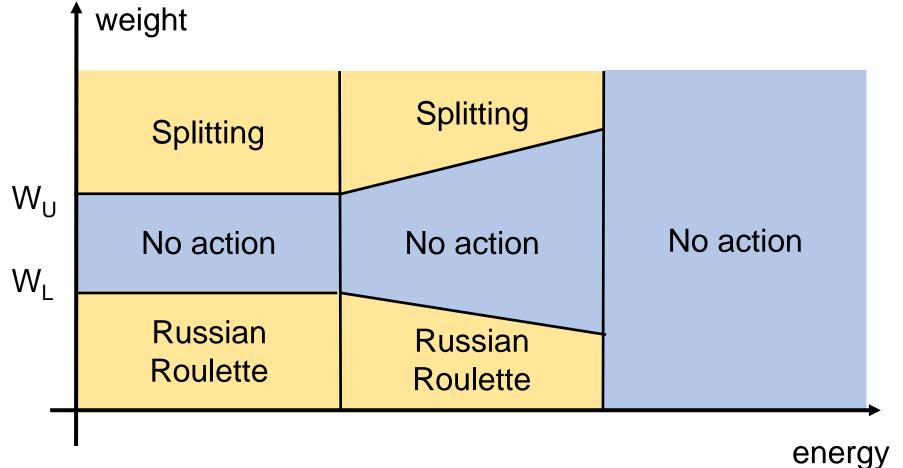
Biasing

Input cards: WW-FACTO, WW-THRES

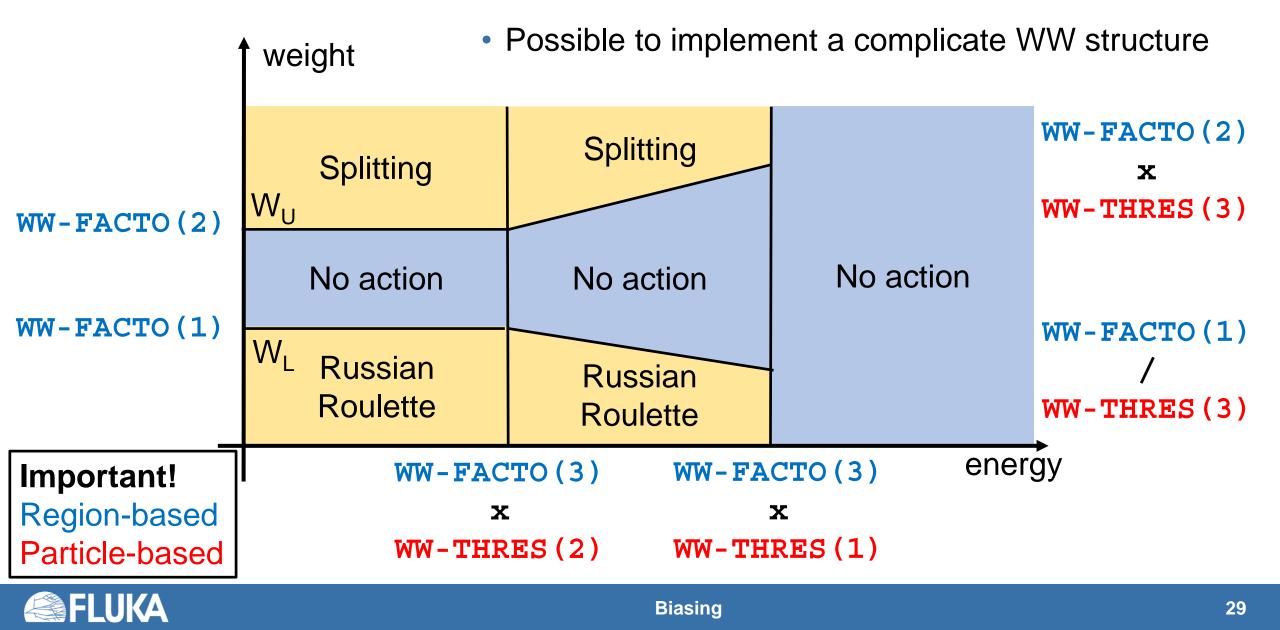


- Input cards: WW-FACTO, WW-THRES
- Can be used as stand-alone VRT
- Allow to control large weight fluctuations introduced by other biasing techniques

IMPORTANT: both cards needed!


- Combination of RR (Russian Roulette) and Splitting
- Based on the absolute weight value
- Set upper and lower limit on particle weight
 - Killing particle with low weight decreases t and has little effect on σ
 - Splitting a particle with high weight increases t but decreases $\boldsymbol{\sigma}$
 - Overall effect: increase of the FOM=1/(σ^2 ·t)
- Typical ratio between upper and lower limit is ~10
- Requires careful design

- Given a particle whose weight is w_i...
- If... $w_i > W_U$
 - The particle is split
- If... $W_U > W_i > W_L$
 - No action is performed
- If... W_L > w_i
 - A Russian Roulette is applied
 - If the particle survives, the weight is increased



Possible to implement a complicate WW structure as function of:

- Particle energy
- Particle type
- Region

Input card: WW-THRES

- E upper
 - Maximum particle energy for which the WW is applied
- E lower
 - Minimum particle energy for which the WW is applied
- amp f
 - Amplification factor for different WW over different energy ranges
- Opt
 - WW applied or not to primaries
- Part to Part Step
 - Standard FLUKA particle selection

Example explanation: WW applied to all particles (from 4-HELIUM to @LASTPAR) having energy between 1 KeV and 2 GeV; the amplification factor =1 means that the WW is constant

			▼
WW-THRESH	E upper: 2	E lower: 1E-6	amp f: 1
Opt: PRIMARY v	Part: 4-HELIUM 🔻	to Part: @LASTPAR 🔻	Step:

Biasing

Input card: WW-FACTO

• RR

- Apply Russian Roulette below this weight
- Split
 - Apply splitting above this weight
- mult f
 - Mulitplicative factor for the energies defined in WW-THRES
- LowE n
 - Please ignore
- Reg to Reg Step
 - Standard FLUKA region selection

	0		▼	
WW-FACTOR	RR: 1E-2	Split: =1/1.5849	mult f: 1	
LowE n: 🔻	Reg: Shield1 🔻	to Reg: 🔻	Step:	
FLUKA		Biasing		31

Example explanation:

WW applied only in

RR is applied to all

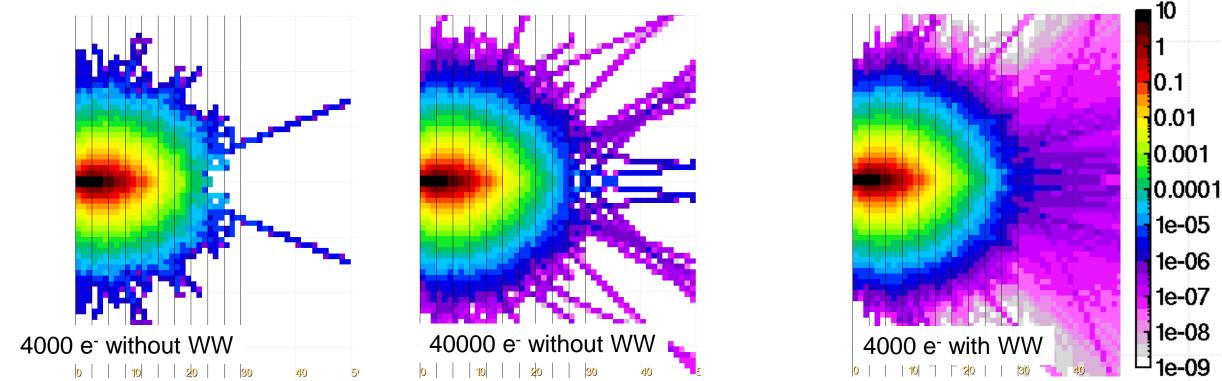
particles having weight

Splitting is applied to all

particles having weight

larger than 1/1.5849.

region Shield1.


lower than 1E-2.

Input card: WW-THRES, WW-FACTO

Primaries: 500 MeV electrons

From vacuum to lead target 10 slab, 3 cm each

ALL-PART fluence

Biasing

USIMBS: USer defined IMportance BiaSing

Input card: **BIASING**

USIMBS

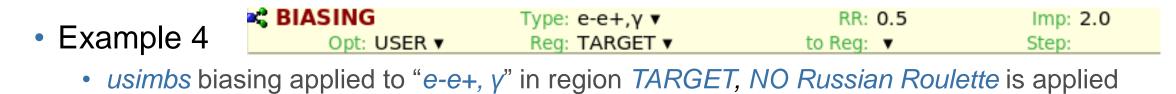
- Input card: **BIASING**
- Allows to…
 - ...code very complicated user-defined biasing
- Improper implementation can lead to divergent simulation time
- Requires extremely careful tuning
- Multiple **BIASING** cards are allowed
- It also works with pointwise neutron cross sections

USIMBS

Input card: **BIASING**

- Opt
 - USER (to select biasing activated via the **usimbs.f** user routine)
- Type
 - Select to which type of particles the used defined biasing has to apply
 - "All particles", "Hadrons & Muons", "e-e+, γ", "Low neutrons"
- Imp
 - To activate/deactivate USIMBS calls in the selected regions
 - Imp = 1 deactivates USIMBS calls ; Imp ≠ 1 activates USIMBS calls
- Reg to Reg Step
 - Standard FLUKA region selection
- *RR*
 - To apply a Russian Roulette to the secondary generation (only for "Hadrons & Muons")

USIMBS


 Example 1 	Copt: USER ▼	Type: All particles ▼ Reg: TARGET ▼	RR: to Reg: 🔻	Imp: 2.0 Step:
 usimbs biasing applied to all particles in region TARGET 				

Example 2	REASING	Type: Hadrons & Muons 🔻	RR: 0.5	Imp: 2.0
	Opt: USER 🔻	Reg: TARGET V	to Reg: 🔻	Step:
 usimbs bias 	sing applied to "Hadro	ons & Muons" in region 7	TARGET, 50%	Russian Roulette applied

to secondaries from "Hadrons & Muons"

• Example 3

• usimbs biasing applied to all particles in region TARGET, 50% Russian Roulette applied to secondaries from "Hadrons & Muons"

USIMBS

	< BIASING	Type: All particles 🔻	RR: 1.0	Imp: 123.45
	Opt: USER 🔻	Reg: TARGET 🔻	to Reg: 🔻	Step:
Evomplo 5	SIASING	Type: All particles 🔻	RR: 0.5	Imp: 123.45
 Example 5 	Opt: RRPRONLY V	Reg: TARGET 🔻	to Reg: 🔻	Step:

- usimbs biasing applied to all particles in region TARGET
- 50% Russian Roulette applied to secondaries from "Hadrons & Muons" primary interactions
- **RRPRONLY**: Russian Roulette to PRimary interactions ONLY

	SIASING	Type: All particles 🔻	RR: 0.5	Imp: 123.45
	Opt: RRPRONLY V	Reg: TARGET V	to Reg: 🔻	Step:
	< BIASING	Type: All particles 🔻	RR: 1.0	Imp: 123.45
 Example 6 	Opt: USER 🔻	Reg: TARGET V	to Reg: 🔻	Step:

- usimbs biasing applied to all particles in region TARGET
- NO Russian Roulette applied to any secondary
- The second card supersede the first card

USIMBS	< BIASING	Type: All particles 🔻	RR:	Imp: 123.45
	Opt: USER 🔻	Reg: REG_1 V	to Reg: 🔻	Step:
	< BIASING	Type: All particles 🔻	RR:	Imp: 543.12
	Opt: 🔻	Reg: REG_2 ▼	to Reg: 🔻	Step:
	SIASING	Type: All particles 🔻	RR:	Imp: 23.451
 Example 7 	Opt: 🔻	Reg: REG_3 V	to Reg: 🔻	Step:

- Misleading use of biasing
- One card with *Opt USER* activated *usimbs* biasing for all regions having $Imp \neq 1$
- usimbs biasing is applied to all particles in REG_1, REG_2, & REG_3

SIASING	Type: All particles 🔻	RR:	Imp: 123.45
Opt: USER 🔻	Reg: REG_1 V	to Reg: @LASTREG 🔻	Step:
SIASING	Type: All particles 🔻	RR:	Imp: 1.0
Opt: 🔻	Reg: REG 2 V	to Reg: 🔻	Step:

- Possible clever of biasing: avoid unnecessary calls to the user routine
- First, usimbs biasing is applied to all particles in all regions
- Then, *usimbs* biasing is deactivated in *REG_2*

• Example

USIMBS-usimbs.f

- usimbs.f contains a subroutine and a entry which are called at different times during transport
- SUBROUTINE USIMBS
- ENTRY USIMST -

```
SUBROUTINE USIMBS ( MREG, NEWREG, FIMP )
     INCLUDE 'dblprc.inc'
     INCLUDE 'dimpar.inc'
     INCLUDE 'iounit.inc'
     Input variables:
               Mreg = region at the beginning of the step
             Newreg = region at the end of the step
     (thru common TRACKR):
             Jtrack = particle id. (Paprop numbering)
             Etrack = particle total energy (GeV)
      X,Y,Ztrack(0) = position at the beginning of the step
  X,Y,Ztrack(Ntrack) = position at the end of the step
    Output variable:
               Fimp = importance ratio (new position/original one)
     INCLUDE 'trackr.inc'
          = ONEONE
     FIMP
     RETURN
     Entry USIMST:
     Input variables:
               Mreg = region at the beginning of the step
               Step = length of the particle next step
    Output variable:
               Step = possibly reduced step suggested by the user
     ENTRY USIMST ( MREG, STEP )
     IF ( STEP .GT. ONEONE ) STEP = HLFHLF * STEP
     RETURN
END
```


USIMBS-usimbs.f

• ENTRY USIMST

- Called when the step is calculated
- It halves any step > 1 cm
- Then, **SUBROUTINE USIMBS** is called
- Relevant for neutral particles:
 - the end of the step is either an interaction point or a boundary crossing
- The step length STEP is not available in the subroutine

```
SUBROUTINE USIMBS ( MREG, NEWREG, FIMP )
     INCLUDE 'dblprc.inc'
     INCLUDE 'dimpar.inc'
     INCLUDE 'iounit.inc'
     Input variables:
               Mreg = region at the beginning of the step
             Newreg = region at the end of the step
     (thru common TRACKR):
             Jtrack = particle id. (Paprop numbering)
             Etrack = particle total energy (GeV)
       X, Y, Ztrack(0) = position at the beginning of the step
  X,Y,Ztrack(Ntrack) = position at the end of the step
    Output variable:
               Fimp = importance ratio (new position/original one)
     INCLUDE 'trackr.inc'
     FIMP = ONEONE
     RETURN
     Entry USIMST:
     Input variables:
               Mreg = region at the beginning of the step
               Step = length of the particle next step
    Output variable:
               Step = possibly reduced step suggested by the user
     ENTRY USIMST ( MREG, STEP )
     IF ( STEP .GT. ONEONE ) STEP = HLFHLF * STEP
     RETURN
END
```


USIMBS-usimbs.f

• SUBROUTINE USIMBS

- Called when the step is performed
- Variable **FIMP** sets the ratio to apply Russian roulette and splitting
- Any combination of criteria can be used to calculate FIMP

```
SUBROUTINE USIMBS ( MREG, NEWREG, FIMP )
     INCLUDE 'dblprc.inc'
     INCLUDE 'dimpar.inc'
     INCLUDE 'iounit.inc'
     Input variables:
               Mreg = region at the beginning of the step
             Newreg = region at the end of the step
     (thru common TRACKR):
             Jtrack = particle id. (Paprop numbering)
             Etrack = particle total energy (GeV)
      X, Y, Ztrack(0) = position at the beginning of the step
  X,Y,Ztrack(Ntrack) = position at the end of the step
    Output variable:
               Fimp = importance ratio (new position/original one)
     INCLUDE 'trackr.inc'
     FIMP = ONEONE
     RETURN
     Entry USIMST:
     Input variables:
               Mreg = region at the beginning of the step
               Step = length of the particle next step
    Output variable:
               Step = possibly reduced step suggested by the user
     ENTRY USIMST ( MREG, STEP )
     IF ( STEP .GT. ONEONE ) STEP = HLFHLF * STEP
     RETURN
END
```


USIMBS – usimbs.f implementation example

FIMP = ONEONE

if (JTRACK .eq. 8) then

if (XTRACK(0).gt.1234.d0 .and. XTRACK(0).lt.4321.d0) then

if (YTRACK(0).gt.0.d0 .and. YTRACK(0).lt.21.d0) then

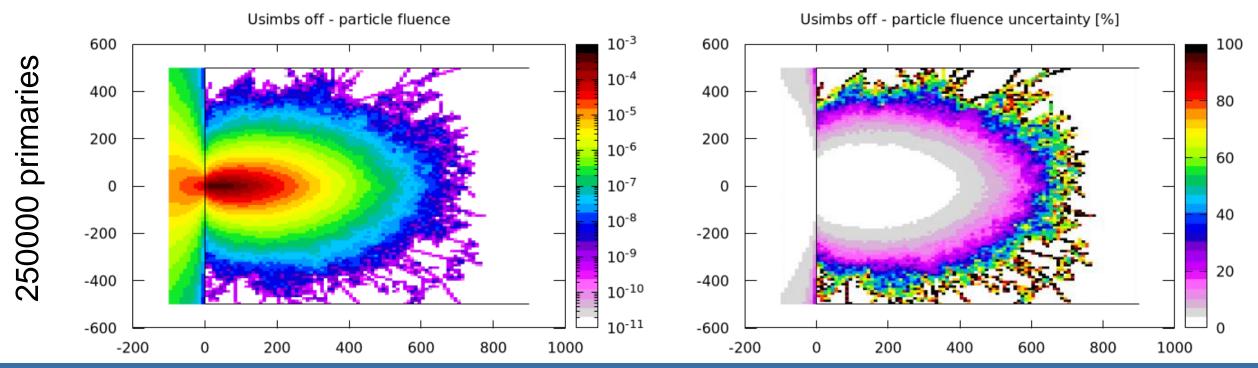
 $FIMP = \ldots$

endif

endif

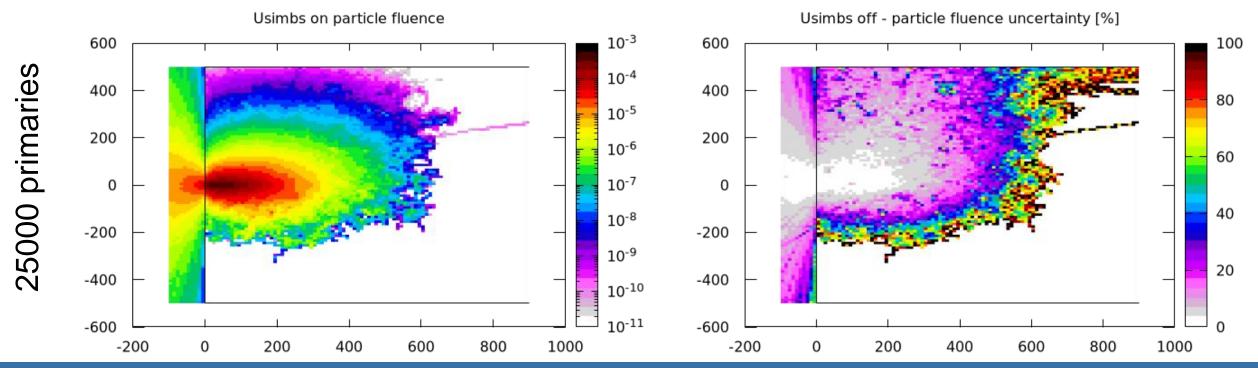
endif

Implementation based on particle type (JTRACK=8 means neutrons) & particle position


USIMBS general comments

- **FIMP** increase should not be excessive
- The increase is called at each step
- The stack can be filled quickly
- Excessive biasing can lead to a divergent CPU time
- **FIMP** = 1.2 is already quite large
- Good strategy: compensate for the particle attenuation
- Important feature: directional biasing can be implemented
- Neutrons and photons biasing could be sufficient:
 - Charged particles step length can be "complicated": multiple scattering, energy loss, δ-ray
 - Neutral particles are "drivers" for charged particles

USIMBS


- Example of directional biasing
- Target: concrete cylinder, 5m radius, 10 m depth
- Beam: 1 GeV neutrons
- Without biasing

USIMBS

- Example of directional biasing
- Target: concrete cylinder, 5m radius, 10 m depth
- Beam: 1 GeV neutrons
- With directional biasing toward (1000.d0, 0.d0, 200.d0)

Biasing

Summary of the input cards for biasing

Summary of the input cards for biasing

• BIASING

- Region Importance biasing (Surface Splitting and Russian Roulette)
- Secondaries multiplicity tuning in hadronic interactions
- User defined importance biasing, USIBMS
- EMF-BIAS
 - Leading Particle Biasing for electron, positron, and photon interactions
- LAM-BIAS
 - Mean free path biasing (interaction length)
 - Lifetime & Decay-length biasing
- WW-FACTO, WW-THRES
 - Weight windows biasing

