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Low energy (E≤20MeV) neutron treatment



Introduction

• In FLUKA, neutrons below 20 MeV are called low energy neutrons

• Neutron interactions at higher energy are handled by FLUKA nuclear models

• Transport and interactions of neutrons with energies below E≤20 MeV are handled 

by a dedicated neutron library

• Why are low Energy Neutrons special?

• The neutron has no charge

→ can interact with nuclei at low energies, e.g. meV

• Neutron cross sections (s) are complicated, depending on the isotope and/or solid state effects 

on crystalline structures at low neutron energies

→ cannot be calculated by models

→ we rely on data files
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Typical neutron cross-section
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Evaluated Nuclear Data Files (ENDF)

The neutron data are provided in the Evaluated Nuclear Data Files (ENDF)

Major libraries: ENDF, JEFF, JENDL, TENDL, CENDL, BROND, …

• Organized per isotope

• per interaction channel (elastic, capture, inelastic, fission, ….)

• Cross section (resonance parameters + continuum)

• Final states (uncorrelated) described in a plethora of “laws”

• Most libraries share the same data

• Channels without measurements are completed with “models”

• Old databases contained natural elements

Thermal Scattering Law Data are provided in additional datafiles for a few selected 

materials/isotopes

Specialized programs NJOY, PREPRO,… are used to preprocess for use in MC
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Monte Carlo approaches

Groupwise

• histogram like/group information, was

widely used in neutron transport codes

• Advantages

• fast

• small memory footprint

• gives good results for some applications

• Drawbacks:

• self-shielding not accurately reproduced 

• discrete angular distributions (e.g. 3 angles 

in FLUKA)

• no recoils, and other particle emissions

Pointwise

• “continuous” scatter plot of pairs of 

(Energy, cross section)

• Advantages

• follows cross section precisely

• no issues with self-shielding (in the 

resolved resonance region)

• accurate reproduction of angular 

distributions and all final states

• Drawbacks

• time and memory consuming
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FLUKA supports both approaches (since v4.3)



Groupwise

Energy groups:

• 1 – highest energy 20..19.64MeV
…
260 – lowest energy  200..10μeV

• Elastic & Inelastic reactions are 
simulated group-to-group transfer 
probabilities (down-scattering matrix)

• Lose energy: down scattering

• Stay in the same group: in-scattering

• Thermal energies: could gain energy up-
scattering

• Neutron has NO PRECISE ENERGY, 
except the first time it enters in the low 
energy domain

• Average cross section in a group is 

given as:

• Assuming a Φ(Ε)
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Groupwise: cards

• LOW-NEUT: to activate, print

and optionally select some old point-wise treatment for a few selected 

isotopes/channels

NOTE: Group-wise is presently the default model for all FLUKA DEFAULTS

• LOW-BIAS: to set a GW neutron cut-off on a region basis
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Groupwise: materials

LOW-MAT sets the correspondence 

between FLUKA material and the GW 

low energy neutron cross sections

If material name = library name, there is 

no need of a LOW-MAT card.

The first match will be used.

It is a mandatory card if the names you 

give do not match the ones in the table
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Temp. Origin RN Name Gam

9Be Beryllium 9 296K ENDF/B-VIIR0 Y BERYLLIU 4 9 296 Y

9Be Beryllium 9 87K ENDF/B-VIIR0 Y BERYLLIU 4 9 87 Y

B Natural Boron 296K ENDF/B-VIIR0 Y BORON 5 -2 296 Y

B Natural Boron 87K ENDF/B-VIIR0 Y BORON 5 -2 87 Y

10B Boron 10 296K ENDF/B-VIIR0 Y BORON-10 5 10 296 Y

10B Boron 10 87K ENDF/B-VIIR0 Y BORON-10 5 10 87 Y

11B Boron 11 296K ENDF/B-VIIR0 Y BORON-11 5 11 296 Y

11B Boron 11 87K ENDF/B-VIIR0 Y BORON-11 5 11 87 Y

C Free gas natural Carbon 296K ENDF/B-VIIR0 Y CARBON 6 -2 296 Y

C Graphite bound nat. Carbon 296K ENDF/B-VIIR0 Y CARBON 6 -3 296 Y

C Free gas natural Carbon 87K ENDF/B-VIIR0 Y CARBON 6 -2 87 Y

N Natural Nitrogen 296K ENDF/B-VIIR0 Y NITROGEN 7 -2 296 Y

N Natural Nitrogen 87K ENDF/B-VIIR0 Y NITROGEN 7 -2 87 Y

14N Nitrogen 14 296K ENDF/B-VIIR0 Y NITRO-14 7 14 296 Y

14N Nitrogen 14 87K ENDF/B-VIIR0 Y NITRO-14 7 14 87 Y

16O Oxygen 16 296K ENDF/B-VIR8 Y OXYGEN 8 16 296 Y

16O Oxygen 16 87K ENDF/B-VIR8 Y OXYGEN 8 16 87 Y

19F Fluorine 19 296K ENDF/B-VIR8 Y FLUORINE 9 19 296 Y

19F Fluorine 19 87K ENDF/B-VIR8 Y FLUORINE 9 19 87 Y

23Na Sodium 23 296K JENDL-3.3 Y SODIUM 11 23 296 Y

23Na Sodium 23 87K JENDL-3.3 Y SODIUM 11 23 87 Y

Mg Natural Magnesium 296K JENDL-3.3 Y MAGNESIU 12 -2 296 Y

Mg Natural Magnesium 87K JENDL-3.3 Y MAGNESIU 12 -2 87 Y

27Al Aluminium 27 296K ENDF/B-VIIR0 Y ALUMINUM 13 27 296 Y

27Al Aluminium 27 SelfShielded 296K ENDF/B-VIIR0 Y ALUMINUM 13 1027 296 Y

Material Identifiers
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Pointwise: key features

• Modern C++ implementation  keeping in mind the future evolution of FLUKA

• Heavily optimized:

• Caching a lot of necessary information (pre-tabulation of cumulative distributions)

• Using adaptive algorithms to improve performance

• Improved sampling of secondary distributions (using tight envelopes in case of rejection)

• An innovative idea: a fast indexing of cross-sections using a cheap CPU log2 approximation

• Hierarchical sampling of channels

• Thermal Scattering Law (TSL) S(α,β,T) for several materials

• Doppler broadening at any temperature on loading

• Preform “fully” correlated emission of reaction products by treating an N-body final 

state as consecutive 2-body emissions (kinematics gradually constraining database 

distributions)
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Pointwise: data sets

• Due to huge size, the neutron data are 

provided as separated packages to 

download. One per major dataset 

(newest evaluation).

• The “default” of FLUKA v4.3 is the 

JEFF-3.3 library

{FlukaDir}/data/neutron/{library}

• Old evaluations are provided as well for 

comparison purposes

Structure:

• JEFF-3.3
• Elastic

• CrossSection

• FS

• Capture
• CrossSection

• FS

• FSMF6

• Inelastic
• …

• Fission
• …

• ThermalScattering
• Coherent

• Incoherent

• Inelastic

One file per isotope, per channel, XS & FS
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Cross-sections

• Preprocessed at 0K [except TSL]

• Tabulation of (Ei,σi) with accuracy < 0.1%

Energy grid is not uniform among channels to ensure the best representation of the 

resonances

• During Initialization:

• Doppler broadened to the T required using a fast adaptive numerical integration

• Always ensuring precision better than 0.1% (as provided in the initial data)
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Doppler broadening

Online Doppler 

Broadening

example of 113Cd vs

JEFF processed with 

NJOY
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Interactions

• Divided into 4 main categories

• Elastic

• Capture

• Inelastic

• Further subdivided into 36 channels

• (n,n’), (n,p), (n,d), (n,3He), (n,α) have special treatment

• Fission

• Fission fragments (database or Wahl systematics)

• All isotopes have elastic, capture and some inelastic channels (typically open at 

high energies, with a few exceptions)

Few isotopes have fission channel
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Elastic

• Above ~5eV the target nucleus is considered at rest

• Below ~5eV the target nucleus motion is sampled from a weighted Maxwell 

Boltzmann distribution (using the constant cross section model)

→ Can lead to an impossible situation moving in the same direction with higher 

speed…

• The recoils are explicitly calculated and pushed in the stack

• On user request S(α,β,T) treatment can be enabled for a handful of isotopes / 

materials
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Radiative Capture

• The neutron is absorbed leading to an 

excited nucleus

→ calling the standard FLUKA de-

excitation module

• All known γ lines will be reproduced

• Currently all isotopes will de-excite to the 

ground state.

Work is going on to properly use the 

probability to end in an isomeric state if 

the information is available in the 

database

• The recoil is properly generated
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Inelastic

• FLUKA will select a sub-channel based on the XS, request the secondaries, Q-

value and residual, and it will try to perform the interaction

• It will sample one-by-one the secondaries (except the photons) from the 

distributions, getting back the Energy and cosθ of the ejectile, either in LAB or in 

CMS.

• Impossible situations can arise → It will reset the interaction and try to perform it 

again. If after several trials the interaction still fails, it will abort the inelastic 

scattering and request another channel

• On success it will de-excite the nucleus with the standard FLUKA module.
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Fission timeline
• Compound nucleus n+(Z,A)→ (Z,A+1)

• ~10% neutrons emitted pre-scission
if kinematically possible

• Scission → Split into two or three fragments

• Excited fragments emit prompt neutrons proportionally 
to their neutron excess and gammas from the database 
distribution

• Fragments are sampled either from the database or 
from Wahl systematics

• Fragments can further emit delayed neutrons
not implemented!

• Beta decay of fission fragments via a decay run

• Neutrino emission of fission fragments – not 
implemented
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Thermal Scattering Law S(α,β,T) (1/2)

• For neutrons with thermal energies, generally less than ~4 eV, the kinematics of 

scattering can be affected by chemical binding and crystalline effects of the target 

molecule. If these effects are not accounted in a simulation, the reported results 

may be highly inaccurate.

• The theory behind S(α,β,T) is rooted in quantum mechanics and is quite complex.

• Luckily NJOY can preprocess the Thermal Cross section data and prepare 3D 

tabulations with:

• [Incoming neutron energy; Outgoing energy; Outgoing angular distribution]

• [Incoming neutron energy; Bragg Edge; Outgoing angular distribution]
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Thermal Scattering Law S(α,β,T) (2/2)

• Channels:

the names do not refer to the nuclear interaction but at which state they leave the 

scattering system

• Elastic – the neutron energy remains the same, the angle is changing

• Coherent – discrete angles depending on the crystal direction vs neutron direction and Bragg edge 

selected, on crystal lattice

• Incoherent – continuous distribution of angles mostly on hydrogenous materials

• Inelastic – the scattering system is left in an excited state

• 58 materials available

• al_metal, be_beo, be_metal, benzen, d_heavy_water, d_ortho_d2,

• d_para_d2, fe_metal, graphite, h_l_ch4, h_ortho_h2, h_para_h2,

• h_polyethylene, h_s_ch4, h_water, h_zrh, o_beo, o_uo2, u_uo2,

• zr_zrh, …

• At various fixed temperatures per material: 4 .. 800 °K
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Example S(α,β,T) on ZrH2
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Example S(α,β,T) on Graphite
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Usage: LOW-PWXS

• LOW-PWXS card controls the new pointwise treatment in FLUKA

• WHAT(1):
• empty/0 = use PW treatment for this isotope (default) 

• >0 Isotope code Z*10000 + A*10 + iso

• -1 = switch to OLD behavior, use GW/Old PW treatment for this isotope

• WHAT(2):
• S(α,β,T) database to associate with this isotope

• WHAT(3):
• Temperature in °K to Doppler broaden XS (default 296 °K)

• WHAT(4,5,6):
• FLUKA material range

• SDUM:
• Select database to be used. Empty = default (For the present v4.3 default = JEFF-3.3)
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LOW-PWXS: examples

• Without any argument to enable PW treatment for all isotopes

• With WHAT(1) = -1 to use OLD way GW+PW for some isotopes

• Enable PW for HYDROGEN (natural 1H + 2H)

Load from endf database

Doppler broaden to 350 °K

Select the h_water S(α,β,T) ONLY for 1H

• At present the full pointwise treatment is not enabled by default in FLUKA.

It will be the default in the coming releases.
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Scoring: USR{BDX, TRACK, YIELD, COLL}

Groupwise:

• When low-energy neutrons are requested to be scored, FLUKA will use the FIXED 

energy group structure of 260 groups, independent on what is supplied on the card

Pointwise: 

• FLUKA will honor the user histogram settings:

ONLY IF the materials of the regions involved have ALL constituents declared as 

point wise.

• Special attention on VACUUM which can be declared as point or groupwise with the 
LOW-PWXS card
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FLUKA output

• Search for the section:

Low energy neutron Point Wise 

materials

• For each FLUKA material that contains 

PW isotopes it will dump the natural 

composition, temperature, abundance, 

dataset used, and time for the Doppler 

broadening

• When something goes wrong verify that 

what was asked was what you got
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Summary

• Low energy neutrons ≤20MeV have special treatment in FLUKA.

• Two methods are available:

• Groupwise: old coarse, but fast treatment. Few isotopes/channels are in point wise.

It is currently the FLUKA default for compatibility reasons (to be revised)

• Pointwise: superior model, highly optimized, giving access to all latest available neutron data, 

explicit treatment of interactions in fully correlated way

• What to use:

• Prefer the use of pointwise

• unless: Speed is an issue and you are not interested in the detailed neutron treatment

Warning: Neutrons can be indirectly responsible for many effects (activation, damage, SEU)

• When unsure, use pointwise to properly take into account all physical effects

• Groupwise can work nicely for shielding applications

• Optionally you can mix point- and groupwise treatment in the same problem
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