Workgroup-I
exotics subgroup summary -I

Gökhan ÜNEL / CERN & Univ. California, Irvine

Flavour in the era of the LHC
26-28 March 2007
5 meetings between November 2005 and March 2007

Non-supersymmetric models beyond SM

- 20 contributions,
- Both theoretical and phenomenological studies,
- ~50 pages for the yellow report
Non-SUSY BSM Chapter

F. del Aguila¹, J. A. Aguilar Saavedra¹,* , D. Aristizabal Sierra², B. Clerbaux³, C. Dennis⁴, D. Fassouliotis⁵, G. W. S. Hou⁶, M. M. Kirsanov⁷, M. Karagöz Ünel⁴, C. Kourkoumelis⁵, R. Mehdiyev⁸,⁹, G. Moreau¹⁰, E. Özcan¹¹, Z. Roupas⁵, G. Servant¹²,¹³ S. Sultansoy¹⁴,¹⁵, J. Tseng⁴, G. Ünel¹²,¹⁵,* , M. Yılmaz¹⁴

¹ Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, E-18071 Granada, Spain.
² AHEP Group, Instituto de Física Corpuscular – C.S.I.C./Universitat de València Edificio de Institutos de Paterna, Apartado 22085, E-46071 València, Spain.
³ Université Libre de Bruxelles, Bruxelles, Belgique.
⁴ University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK
⁵ Department of Physics, University of Athens, Athens, Greece.
⁶ Department of Physics, National Taiwan University, Taipei, Taiwan 10617.
⁷ INR Moscow, Russia.
⁸ Université de Montréal, Département de Physique, Montréal, Canada.
⁹ Institute of Physics, Academy of Sciences, Baku, Azerbaijan.
¹⁰ Laboratoire de Physique Théorique, Univ. Paris-Sud, Orsay, France.
¹² CERN, Physics Department, CH-1211 Geneva 23, Switzerland.
¹³ Service de Physique Théorique, CEA Saclay, F91191 Gif-sur-Yvette, France.
¹⁴ Gazi University, Physics Department, Ankara, Turkey.
¹⁵ Univ. California at Irvine, Physics and Astronomy Dept., Irvine, USA.
* Contact Person

Thank you to all ..
Motivations

- SM is like your old car: *you know it has problems*!
 - Hierarchy problem: $\delta H \sim M_H$
 - Non-unification for EW and Strong Forces
 - Seemingly arbitrary fermion mass & mixings
 - Unknown source of baryogenesis

- LHC is to start soon:
 - at the end of 2007 $\sqrt{s}=0.9$ TeV
 - In 2008 LHC will provide $\sqrt{s}=14$ TeV,
 - few years at 10 fb$^{-1}$/yr: low luminosity
 - then 100 fb/yr: nominal or design luminosity

- What flavour physics can be done at this new era?
 - What are the extensions to SM?
“Exotic” models

A brief summary of popular models:

- **Grand Unified Theories:**
 - SM gauge group is embedded into a larger one like SO(10), to unify EW and QCD.
 - additional fermions and bosons predicted.

- **Little Higgs models:**
 - spontaneously broken global symmetry to impose a cut-off ~10 TeV.
 - additional bosons and quarks introduced to cure the hierarchy problem.

- **Extra Dimensions:**
 - Low Planck scale in d dimensional theory solves the hierarchy problem between EW and Gravitational couplings.
 - Excitations of SM bosons and fermions are predicted.

*These models do **not** exclude supersymmetry.*
0. Introduction

1. Searches for scalars
 1.1. Babu-Zee model

2. Searches for quarks
 2.1. iso-singlet quarks
 2.2. iso-doublet quarks

3. Searches for leptons
 3.1. heavy neutrinos

4. Searches for vector bosons
 4.1. Z’ searches
 4.2. W’ searches

5. Conclusions
1. Searches for scalars

Relevant Models

- **2HDM**
 - A 2nd Higgs doublet to induce baryogenesis
 - CPV H can be searched via top quarks \(\text{(see top sub-group report)}\)

- **Little Higgs**
 - A Higgs triplet to cancel its own loop contribution to \(m_H\)
 - Higgs correction is small, new Higgs might be inaccessible

- **Babu-Zee model**
 - Two new scalars to induce the \(\nu\) masses at 2-loop level.
 - New scalars can be accessible at the LHC
1.1 Babu-Zee model

- h^+ and k^{++}, couple to leptons, give Majorana ν mass.
- ν data predicts $M_{h,k} \sim O(0.1 - 1.0 \text{ TeV})$
- Signature: $q\bar{q} \rightarrow \gamma^*, Z^* \rightarrow k^{--}k^{++}$
 $k^{\pm\pm} \rightarrow h^\pm h^\pm$
 $k^{\pm\pm} \rightarrow \ell^\pm\ell^\pm$
 BR($k\rightarrow hh$) model dependent values [0.1 - 0.8] scanned

- $\sigma_{\text{pair production for } k, h}$
 PRD67, 073010

Excluded by $\mu \rightarrow e\gamma \tau \rightarrow 3\mu$
2. Searches for quarks

Relevant Models

- Iso-singlets predicted in
 - GUTs, Little Higgs, EDs
 - W, Z, H vertex modified
 - γ, g vertex same as SM

- Iso-doublets: the 4th SM-like family
 - not yet ruled out for $m_\nu > m_Z/2$

- Extra Dimensions
 - KK excitations of known quarks
 - additional quarks with $Q = 1/3, 2/3, 5/3$

Iso-singlet quark pair production at LHC (tree level)
<table>
<thead>
<tr>
<th>Q_e</th>
<th>$l_3=0$ singlet</th>
<th>$l_3=\pm 1/2$ doublet</th>
<th>$Q_e = l_3 + \frac{1}{2}Y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1/3</td>
<td>E6, D</td>
<td>4^{th} Fam, d_4/b'</td>
<td>$g_V = l_3 - 2\sin^2\theta_w$</td>
</tr>
<tr>
<td>2/3</td>
<td>LH, T</td>
<td>4^{th} Fam* u_4</td>
<td>$g_A = l_3$</td>
</tr>
<tr>
<td>5/3</td>
<td>EDs,</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*LHC relevant material is also in ATLAS TDR
2.1 Iso-singlets $Q = -1/3$

- E$_6$ model introduces new particles:

$$SUC(3) \times SU_W(2) \times U_Y(1) \subset E_6$$

- One iso-singlet quark per family:

$$\begin{pmatrix}
 u_L \\
 d_L
\end{pmatrix}, u_R, d_R, D_L, D_R \begin{pmatrix}
 c_L \\
 s_L
\end{pmatrix}, c_R, s_R, S_L, S_R \begin{pmatrix}
 t_L \\
 b_L
\end{pmatrix}, t_R, b_R, B_L, B_R$$

Assumptions:

1. In-family mixing bigger than between family mixing
2. D quark is the lightest, like SM: most accessible in LHC
3. E$_6$ gauge bosons heavy & don’t interact w/ SM bosons

$$D \rightarrow Z d \quad D \rightarrow W u$$

<table>
<thead>
<tr>
<th>BR</th>
<th>33%</th>
<th>66%</th>
<th>if there is no Higgs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25%</td>
<td>50%</td>
<td>if Higgs is light</td>
</tr>
</tbody>
</table>
Discovery for $Q = -1/3$

- uses pp\rightarrowDD pair production
 - independent of d-D mixing angle
 - with both the D\rightarrowZd and Z decays leptonically (e,μ)
 - signal is 4 leptons + 2 jets
- ATLAS FastMC based study with simple cuts
- m_D scan up to 1.2 TeV, channel efficient up to ~ 1 TeV

high event yield for low masses
$m_D = 600$ GeV
$\int Lumi = 100$ fb$^{-1}$

optimized cuts for high masses
$m_D = 1$ TeV
$\int Lumi = 100$ fb$^{-1}$
Estimation for other D mass values using only $D \rightarrow Z_d$ channel

- **1 fb$^{-1}$**
 - $3\sigma : m_D \approx 500$ GeV
 - $5\sigma : m_D \approx 350$ GeV

- **10 fb$^{-1}$**
 - $3\sigma : m_D \approx 750$ GeV
 - $5\sigma : m_D \approx 650$ GeV

- **100 fb$^{-1}$**
 - $3\sigma : m_D \approx 940$ GeV
 - $5\sigma : m_D \approx 1050$ GeV

Graph showing the discovery reach for different mass values of the D quark with Tevatron run.
Mixing for $Q=-1/3$

- Jet associated single production & decay
 - $pp \rightarrow jD \rightarrow jjZ$ where leptonic Z decays are considered
- Production $\sigma \sim (\sin\Phi)^2$, where $\Phi = d-D$ mixing angle
 - Good for measuring $\sin\Phi$
- Generator level study with cuts

- 3σ signals can be rescaled for different $\sin\Phi$ values at any mass
- $30, 100, 300 \& 1000$ fb$^{-1}$ reach limits are given
- With 300 fb$^{-1}$ current mixing limits could be enhanced 2 times
Higgs searches & $Q = -\frac{1}{3}$

- d-D mixing leads to dDh vertex at tree level
- this can be exploited for a double discovery: light H & D
- pair production mode considered for ATLAS using FastMC
 - $m_D = 250$ - 1000 GeV range scanned

```latex
\begin{tabular}{|c|c|c|c|}
\hline
$D_1$ & $D_2$ & BR & expected final state \\
\hline
$D \rightarrow h j$ & $D \rightarrow h j$ & 0.029 (0.053) & $2j \ 4j_b$ \\
$D \rightarrow h j$ & $D \rightarrow Z j$ & 0.092 (0.120) & $2j \ 2j_b \ 2l$ \\
$D \rightarrow h j$ & $D \rightarrow W j$ & 0.190 (0.235) & $2j \ 2j_b \ l \ E_T,miss$ \\
\hline
\end{tabular}
```

- 5σ Higgs discovery in $DD \rightarrow Whjj$ channel can be made using 100 fb$^{-1}$ if $m_D < 700$ GeV
- If $m_D < 630$ GeV, this channel becomes as efficient as $h \rightarrow \gamma\gamma$. (i.e. 8$\sigma$ in 100 fb$^{-1}$)

\[\int Lumi = 10 \text{ fb}^{-1} \]
\[m_D = 250 \text{ GeV} \]
\[m_H = 120 \text{ GeV} \]
Up type quark T, predicted by LH & GUT models

T decays via W, Z & H (BR similar to -1/3 quark) to b and t quarks.

pair production considered with all decay modes with at least 1 W decaying leptonically

ATLAS FastMC based study for \(m_T = 1 \) TeV and light Higgs

main background from tt only

<table>
<thead>
<tr>
<th>TT decay</th>
<th>signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>WbWb</td>
<td>(\ell \nu \ bb \ jj)</td>
</tr>
<tr>
<td>WbHt</td>
<td>(\ell \nu \ bbbb \ jj)</td>
</tr>
<tr>
<td>WbZt</td>
<td>(\ell \nu \ bb \ jjjj)</td>
</tr>
</tbody>
</table>
5σ reach for T mass

- TT & Tj used for $\int L = 300$ fb$^{-1}$ data for only $T \to Wb$
 - $\sigma_{Tj} \sim |V_{Tb}|^2$ where $V_{Tb} \sim O(m_t/m_T)$
 - background tt only

up to 1.1 TeV using TT
above this curve using Tj

upper bound from EW precision data, T parameter

$T = 0.117$ (U = 0)
$T = 0.050$

$\sigma_{Tj} \sim |V_{Tb}|^2$
For a light Higgs T quark’s decays provide a large σ enhancement.

- pair production study with pythia using signals: $T\bar{T} \rightarrow WbHt$
- main background tt & $tt\, nj$ where $n=1,2,3,4,5$.

$$T\bar{T} \rightarrow HtHt$$
$$T\bar{T} \rightarrow HtZt$$

Expected signature: $\ell\nu \geq 4b_j \, 2j$

Example at $m_T=500$ GeV, $M_H=115$ GeV, $\int L=30$ fb$^{-1}$

Log likelihood for 4b case

<table>
<thead>
<tr>
<th>#b$_j$</th>
<th>Higgs signal significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6.43</td>
</tr>
<tr>
<td>5</td>
<td>6.02</td>
</tr>
<tr>
<td>6</td>
<td>5.63</td>
</tr>
<tr>
<td>combined</td>
<td>10.45</td>
</tr>
</tbody>
</table>
singlets from EDs

- RS model with extended EW gauge group
- additional symmetries allows quarks $m \sim O(100)\text{GeV}$ w/ $Q = -1/3, 2/3, 5/3$
 - q: KK excitation of b with $BR(q \rightarrow W t) \sim 50\%$ for $m_H \sim 300\text{GeV}$
- Focus on qq pair prod.: $2x(q \rightarrow Wt) \rightarrow 4W \ 2b$
 - pythia level study w/ at least 1 W decaying leptonically
 - main SM background has 2 W
 - $m_q = 500 \text{ GeV}$ & $m_H = 300 \text{ GeV}$

promising results
10 fb$^{-1}$ MC

after elimination of 1st hadronic W

bg from tt and ttH events
2.2 Iso-doublets

- A 4th family with heavy quarks and leptons (>200GeV)
- Could explain the observed fermion mixing & mass values, CP violation in b-s transitions
 - Not yet ruled out experimentally
- Study of channels of interest for new quark

<table>
<thead>
<tr>
<th>mixing</th>
<th>pair prod. signal</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>b' → c/u W</td>
<td>cc/uu WW</td>
<td>See next slide</td>
</tr>
<tr>
<td>b' → cW, bZ/H</td>
<td>cbWZ/H</td>
<td>FCNC, could get H as a bonus</td>
</tr>
<tr>
<td>b' → tW</td>
<td>ttWW or bb4W</td>
<td>Same signal as ED KK quarks</td>
</tr>
<tr>
<td>b' → tW, bZ/H</td>
<td>bb WW Z/H</td>
<td>b-jet to distinguish from row 2</td>
</tr>
</tbody>
</table>
4th family - discovery

- Pair production of the quarks: d_4, u_4
 - $m_{u4} \sim m_{d4}$ from DMM approach
- Scenario with mixing to 1st or 2nd generations,
 - $pp \rightarrow d_4d_4/u_4u_4 \rightarrow WWjj$
 - One W decays via e/μ the other via non-b jets: $e/\mu+4j+E_T^{miss}$
- ATLAS fastMC study scanning $m = 250 - 750$ GeV

Width and σ pair production

<table>
<thead>
<tr>
<th>M_{q4} (GeV)</th>
<th>250</th>
<th>500</th>
<th>750</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ (MeV)</td>
<td>0.01</td>
<td>0.08</td>
<td>0.28</td>
</tr>
<tr>
<td>σ (pb)</td>
<td>99.8</td>
<td>2.59</td>
<td>0.25</td>
</tr>
</tbody>
</table>

$m_q = 250$ GeV

$\int L = 1 fb^{-1}$

$s/\sqrt{b} \sim 120$
Quark searches seem promising in LHC;

- Still unexplored channels, unconsidered models, omitted backgrounds & ongoing collaborative work.

What about new leptons & vector bosons? see *part 2*.

High mass also seems to be feasible:

\[m_q = 750 \text{ GeV} \quad \text{and} \quad \int L = 5 \text{fb}^{-1} \]

\[s/\sqrt{b} \approx 5 \]

Necessary \[\int \text{Luminosity for } 5\sigma \text{ signal} \]

<table>
<thead>
<tr>
<th>(M_q) (GeV)</th>
<th>250</th>
<th>500</th>
<th>750</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\int L) (fb(^{-1}))</td>
<td>0.002</td>
<td>1.95</td>
<td>5</td>
</tr>
</tbody>
</table>
Flavour in the era of the LHC

THANK YOU FOR YOUR ATTENTION.
a Workshop on the interplay of flavour and collider physics

QUESTIONS?
First meeting:

CERN, November 7-10 2005

http://mlm.home.cern.ch/mlm/FlavLHC.html

- BSM signatures in B/K/D physics, and their complementarity with the high-pt LHC discovery potential
- Flavour phenomena in the decays of SUSY particles
- Squark/slepton spectroscopy and family structure
- Flavour aspects of non-SUSY BSM physics
- Flavour physics in the lepton sector
- $g - 2$ and EDMs as BSM probes

Local Organizing Committee
A. Cucco (CERN, Geneva)
D. Denegri (Saclay, Gif sur Yvette)
J. Ellis (CERN, Geneva)
R. Fleischer (CERN, Geneva)
G. Giudice (CERN, Geneva)
T. Hurth (CERN, Geneva)
M. Mangano (CERN, Geneva)
T. Nakada (EPFL, Lausanne)
G. Polesello (INFN, Pavia)
M. Smizanska (Lancaster Univ)

International Advisory Committee
A. Ali (DESY, Hamburg)
A. Buras (TUM, Munich)
P. Cooper (FNAL, Batavia)
P. Frassati (ILNF, Frascati)
M. Giorgi (Universita' di Pisa)
K. Hagiwara (KEK, Tsukuba)
S. Jin (IHEP, Beijin)
L. Littenberg (BNL, Brookhaven)
G. Martinelli (La Sapienza, Roma)
A. Masiero (Università di Padova)
H. Murayama (UC and LBNL, Berkeley)
A. Sanda (Nagoya University)
Y. Semertzidis (BNL, Brookhaven)
S. Stone (Syracuse University)
M. Yamauchi (KEK, Tsukuba)
P. Zerwas (DESY, Hamburg)

THANK YOU FOR YOUR ATTENTION.

QUESTIONS?
D quark pair production

- **Gluons, s channel**
 - Diagram showing gluons interacting to produce a quark pair.

- **Gluons, t channel 1**
 - Diagram showing gluons in a specific interaction channel.

- **Gluons, t channel 2**
 - Diagram showing another gluons interaction channel.

- **Up quarks, s channel**
 - Diagram showing quarks interacting through photon or Z boson.

- **Down quarks, s channel**
 - Diagram showing quarks interacting through photon or Z boson.

- **Up quarks, t channel**
 - Diagram showing quarks interacting through a W boson.

- **Down quarks, t channel 1**
 - Diagram showing quarks interacting through a W boson.

- **Down quarks, t channel 2**
 - Diagram showing quarks interacting through a W boson.
Single D quark production

- Decays involving Z would be easiest to reconstruct:

- \(m_D = 400 \ldots 2000 \) GeV cases are considered using generator level MC (CompHEP) with 2j+Z as the signal (\(\sin \Phi = 0.045 \))

- All SM processes yielding 2j+Z are also considered as background events where j can be any light jet.
is 4th SM family Possible?

Precision EW data consistent with fourth generation with a heavy neutrino.

Example exclusion plot from Novikov, Okun, Rozanov, Vysotsky, PLB 529, 2002, for:

\[M_{D4} = 200 \text{ GeV} \]
\[M_{U4} = 220 \text{ GeV} \]
\[M_{E4} = 100 \text{ GeV} \]

At the minimum,
\[\chi^2 / \text{d.o.f.} = 21.6 / 12, \quad \text{Ng} = 1.4, \]
\[M_{v4} = 50 \text{ GeV}, \quad M_H = 116 \text{ GeV}. \]