
Mu-Chun Chen, University of California at Irvine


Rabi Fest, University of Maryland, College Park, Oct 20, 2022

Rabi’s Always Bright 
InsightsNeutrinos and Physics beyond 

the Standard Model  
Mu-Chun Chen, University of California at Irvine

UC Irvine Colloquium, Nov 12, 2015

UCI Women in 
Physics and Astronomy

welcome

Class of 2017
Join us for our monthly lunches and

monthly girl nights out!

Follow us on our Facebook group:

UCI Women in Physics & Astronomy

Freshmen Contact Person:  

Prof. Mu-Chun Chen

muchunc@uci.edu

Join our mailing list:  

physics-women@department-lists.uci.edu

Giada Carminati 
for WPA 



My first learning about 
Neutrinos & SUSY

TASI 1997, Boulder Colorado



Two Physics lessons from Rabi:

Symmetries ⇒ reduction in # of parameters

Novel Fundamental Origin of CP Violation



Snowmass 
2004



Where Do We Stand?
• Latest 3 neutrino global analysis:
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➡ hints of θ23 ≠ π/4

➡ expectation of Dirac CP phase δ 

➡ slight preference for normal mass ordering

Gonzalez-Garcia, Maltoni, Schwetz (NuFIT), 
2111.03086



6

Where Do We Stand?

~2 x 10-3 eV2

~2 x 10-3 eV2

~7 x 10-5 
eV2

~7 x 10-5 eV2

Normal Ordering Inverted Ordering



7

Where Do We Stand?

~2 x 10-3 eV2

~2 x 10-3 eV2

~7 x 10-5 
eV2

~7 x 10-5 eV2

Normal Ordering



8

☞ Majorana vs Dirac? 


☞ CP violation in lepton sector? 


☞ Absolute mass scale of neutrinos?


☞ Mass ordering: sign of (Δm132)?


☞ Sterile neutrino(s)?


☞ Precision: θ23 > π/4, θ23 < π/4, θ23 = π/4 ?

☞ Additional Neutrino Interactions?

Open Questions - Neutrino Properties

a suite of current and upcoming 
experiments to address these puzzles

To understand 
some of these 

properties 
⇒ BSM Physics
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  ☞ Smallness of neutrino mass:

Open Questions - Theoretical

mν ≪ me, u, d

  ☞ Flavor structure:
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  ☞ Smallness of neutrino mass:

Open Questions - Theoretical

mν ≪ me, u, d

  ☞ Flavor structure:

quark mixing leptonic mixing

[ [] ]
Fermion mass and hierarchy 

problem ➟ Many free parameters in 
the Yukawa sector of SM



Why Should We Care?
• Understanding a wealth of data, fundamentally

• SM flavor sector: no understanding of significant fraction (22/28) 

of SM parameters; (c.f. SM gauge sector)

• Neutrinos as window into BSM physics


• neutrino mass generation unknown (suppression mechanism, scale)

• Uniqueness of neutrino masses ➜ connections w/ NP frameworks    


• Neutrinos affords opportunities for new explorations

• New Tools

• May address other puzzles in particle physics


• Window into early Universe

• UV connection

10



Seesaw model has been previously shown [11] to induce a non-unitary leptonic mixing
matrix. In this work we will explicitly analyze the issue for the other types of Seesaw
models.
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Figure 1: The three generic realizations of the Seesaw mechanism, depending on the
nature of the heavy fields exchanged: SM singlet fermions (type I Seesaw) on the left,
SM triplet scalars (type II Seesaw) and SM triplet fermions (type III Seesaw) on the
right.
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Smallness of 
Neutrino Masses

Type I 
Seesaw

Type II 
Seesaw



Non-Abelian Discrete Flavor Symmetries
• Large neutrino mixing motivates discrete flavor 
symmetries


•A4 (tetrahedron)


• T´ (double tetrahedron) 


•S3 (equilateral triangle)


•S4 (octahedron, cube)


•A5 (icosahedron, dodecahedron)


• ∆27 


•Q6 


•…..
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The Horizontal Symmetry

• Three families are the

same under vertical

symmetry; yet

different under

horizontal symmetry

• Zeros in the mass

matrices are protected

by a family symmetry

SU(2)F

uuu

ddd

eee

sss

ttt

bbb

!!!µµµ

"""µµµ

!!!"""

ccc

!!!eee

SU(2)F

SU(10)

GUT Symmetry
SU(5), SO(10), …

family symmetry 
(T′, SU(2), ...)

[Eligio Lisi for NOW2008 ]



Tri-bimaximal Neutrino Mixing

• Latest Global Fit (3σ)

• Tri-bimaximal Mixing Pattern 
Harrison, Perkins, Scott (1999)

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2⇧

limits for the mixing parameters [1],

sin
2 ⇤12 = 0.30 (0.25� 0.34), sin

2 ⇤23 = 0.5 (0.38� 0.64), sin
2 ⇤13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =

�

⇧⇧⇧⇤

⌥
2/3 1/

⇧
3 0

�
⌥

1/6 1/
⇧

3 �1/
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2
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⌥

1/6 1/
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3 1/
⇧

2

⇥
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, (2)

which predicts sin
2 ⇤atm, TBM = 1/2 and sin ⇤13,TBM = 0. In addition, it predicts sin

2 ⇤⇥,TBM = 1/3

for the solar mixing angle. Even though the predicted ⇤⇥,TBM is currently still allowed by the

experimental data at 2⇧, as it is very close to the upper bound at the 2⇧ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1
⇤
, 1

⇤⇤
and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a di⇥erent finite group, the double tetrahedral group,
(d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition,
(d)T has three in-equivalent

doublets, 2, 2
⇤
, and 2

⇤⇤
, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing
(d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⇤ 1 representation assignments under
(d)T , and the

prediction for the solar mixing angle is ⌅ 10
�3

, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the
(d)T to
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sin2 ✓13 = 0.0234 (0.0176� 0.0295)

1

[θlep23 ~ 49.2°]

[θlep12 ~ 33.4°]

[θlep13 ~ 8.57°]

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou (2020)



Neutrino Mass Matrix from A4
• Imposing A4 flavor symmetry on the Lagrangian

• A4 spontaneously broken by flavon fields

• always diagonalized by TBM matrix, independent of the two free 
parameters 

14

under which the transformation properties of various fields are summarized in Table I, the above

Lagrangian is the most general one. Here the operators that couple to H5T3T3 are not shown in the

above Lagrangian as their contributions can be absorbed into a redefinition of the coupling constant

yt. In addition, we neglect the operator H5FT3�⌥⌥� in LTF since its contribution is negligible.

Also not shown are those that contribute to LFF which can be absorbed into a redefinition of the

parameter u and ⌃0. Note that in principle, viable phenomenology may still be obtained when

more operators are allowed, The additional discrete symmetry that is needed in that case would be

smaller. Nevertheless, more Yukawa coupling constants will be present and the model would not

be as predictive. The Z12 ⇥ Z �
12 symmetry also forbids proton and other nucleon decay operators

to very high orders; it is likely this symmetry might be linked to orbifold compactification in extra

dimensions. Note that, the Z12 ⇥ Z �
12 symmetry also separates the neutrino and charged fermion

sectors, so that the neutrinos only couple to the GTST2 breaking sector. Furthermore, it allows the

45-dim Higgs, �45, to appear only in the operator shown above, and thus is crucial for obtaining

the Georgi-Jarlskog (GJ) relations.

The interactions in L⇥ give the following neutrino mass matrix [3], which is invariant under

GTST2 [9],

M⇥ =
⇤v2

Mx

�

⇧⇧⇧⇤

2⌅0 + u �⌅0 �⌅0

�⌅0 2⌅0 u� ⌅0

�⌅0 u� ⌅0 2⌅0

⇥

⌃⌃⌃⌅
, (13)

and we have absorbed the Yukawa coupling constants by rescaling the VEV’s. This mass matrix

M⇥ is form diagonalizable, i.e. the orthogonal matrix that diagonzlizes it does not depend on the

eigenvalues. Its diagonal form is,

V T
⇥ M⇥V⇥ = diag(u + 3⌅0, u, �u + 3⌅0)

v2
u

Mx
, (14)

where the diagonalization matrix V⇥ is the tri-bimaximal mixing matrix, V⇥ = UTBM given in Eq. 2.

This tri-bimaximal mixing pattern and the mass eigenvalues in the neutrino sector are thus the

same as in all previous analyses in models based on A4 and (d)T , which has been shown to be

consistent with experimental data.

The down type quark and charged lepton masses are generated by LTF . Because the renormal-

izable operator H5FT3 is forbidden by the (d)T symmetry, the generation of b quark mass requires

the breaking of (d)T , which naturally explains the hierarchy between mt and mb. The b quark mass,

and thus the ⇧ mass, is generated upon the breaking of (d)T ⇤ GT and (d)T ⇤ GS. As mb and m⇤

are generated by the same operator, H5FT3⌃�, we obtain the successful b� ⇧ unification relation.
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2

relative strengths  
⇒  CG’s

Ma, Rajasekaran (2001); Babu, Ma, Valle (2003); 
Altarelli, Feruglio (2005)

2 free parameters

Neutrino Mixing 
Angles from Group 

Theory



CP Violation in Nature
• CP violation: required to explain matter-antimatter asymmetry 

• So far observed only in flavor sector


• SM: CKM matrix for the quark sector


• experimentally established δCKM as major source of CP violation


• not sufficient for observed cosmological matter-antimatter asymmetry

• Search for new source of CP violation:


• CP violation in neutrino sector

• if found ⇒ phase in PMNS matrix 


• Discrete family symmetries:

• suggested by large neutrino mixing angles

• neutrino mixing angles from group theoretical CG coefficients 

• may come from orbifold compactification


15
Discrete (family) symmetries ⇔ Physical CP violation



Outer Automorphisms ⇔ CP
• Outer automorphisms of the Lorentz group: P, T, C


• C and P violation tied to parity, but CP violation less understood


• Left-Right parity in left-right symmetric/Pati-Salam models


• Gauge Origin of Left-Right Parity:


• Additional Z2 in Pati-Salam models


• Additional Z2 in left-right symmetric models


• Z2LR can be preserved in SO(10) GUTs by giving a VEV to 54-plet


• Automatic preservation through orbifold compactification

16

Pati, Salam (1974)

Mohapatra, Senjanovic (1980)

Kibble, Lazarides, Shafi (1982); Chang, Mohapatra, Parida (1984)

Biermann, Mütter, Parr, Ratz, Vaudrevange (2019)



Outer Automorphisms ⇔ CP
• Not all models can have left-right parity


• Gauge symmetry


• Particle content


• For a long time, it was assumed that CP (which is also an outer 
automorphism) can be imposed on models with arbitrary (gauge) 
symmetry and particle content


• True for continuous symmetries


• Fail for some discrete symmetries


• CP is an outer automorphism; But not all outer automorphisms are CP


• e.g. Left-right parity for Strong CP problem
17



 A Novel Origin of CP Violation
• Complex CG coefficients in certain discrete groups ⇒ explicit CP violation 


• Real Yukawa couplings, real scalar VEVs

• CPV in quark and lepton sectors purely from complex CG coefficients

• No additional parameters needed ⇒ extremely predictive model!


• Scalar potential: if Z3 symmetric ⇒〈∆1〉= 〈∆2〉=〈∆3〉≡〈∆〉 real


• Complex effective mass matrix: phases determined by group theory 

M.-C.C., K.T. Mahanthappa

Phys. Lett. B681, 444 (2009)

a toy model

(   L1          L2    ) ( R
1   R

2 )

C1,2,3,4: 
complex CG 
coefficients of 

G

18

C1 C2 C3 C4

Discrete 
symmetry G

Basic idea

C1

C2

C3
C4



Generalized CP Transformation

•

19

Group theory of CP violation Generalizing CP transformations

Generalized CP transformations

Generalized CP transformations

+ setting w/ discrete symmetry G

+ generalized CP transformation
Holthausen, Lindner, and Schmidt (2013)

+ invariant contraction/coupling in A4 or T
0
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Feruglio, Hagedorn, Ziegler (2013); Holthausen, Lindner, Schmidt (2013)

G and CP transformations do not commute 



Physical CP vs. Generalized CP Transformations

20

complex CGs ➪ G and physical CP transformations do not commute 

Generalized CP transformation:

Necessary Consistency condition:

Constraints on generalized CP transformations

8

Discrete Family Symmetries and Origin of CP Violation Generalizing CP transformations

Constraints on generalized CP transformations

Constraints on generalized CP transformations

+ generalized CP transformation
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Holthausen, Lindner, and Schmidt (2013)

+ consistency condition
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automorphism u : G ! Grepresentation matrixblock–diagonal unitary matrix
+ further properties:

• u has to be class–inverting
• in all known cases, u is equivalent to an automorphism of order two

bottom–line:
u has to be a class–inverting (involutory) automorphism of G
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 Physical CP vs. Generalized CP Transformations

• generalized CP transformation


• Necessary consistency condition


• Necessary and sufficient consistency condition 
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u has to be a class-inverting, involuntary automorphism of G 
➪ non-existence of such automorphism in certain groups 

➪ explicit physical CP violation

Constraints on generalized CP transformations
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How (Not) to Generalize CP 
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CP vs. CP–like transformations

How (not) to generalize CP

proper CP transformations

+ map field operators to their own

Hermitean conjugates

+ violation of physical CP is
prerequisite for a non–trivial

"i!f =

���
�
i! f

���2 �
����

⇣
ı! f

⌘���
2

���
�
i! f

���2 +
����

⇣
ı! f

⌘���
2

anti–particles

particlesÂ connection to observed CP,
baryogenesis & . . .

CP–like transformations

+ map some field operators to
some other operators

+ such transformations have
sometimes been called
“generalized CP
transformations” in the literature

+ however, imposing CP–like
transformations does not imply
physical CP conservation

Â NO connection to observed
CP, baryogenesis & . . .

+ explicit example later



The Bickerstaff-Damhus automorphism (BDA)

• Bickerstaff-Damhus automorphism (BDA) u


• BDA vs. Clebsch-Gordan (CG) coefficients
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Bickerstaff, Damhus (1985)
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The Bickerstaff–Damhus automorphism (BDA)

The Bickerstaff–Damhus automorphism (BDA)
Bickerstaff and Damhus (1985)

+ Bickerstaff–Damhus automorphism (BDA) u

⇢ri
(u(g)) = Uri

⇢ri
(g)⇤U

†
ri
8 g 2 G and 8 i ( ? )

unitary & symmetric

+ BDA vs. Clebsch–Gordan (CG) coefficients

9 BDA u

fulfilling (?)

existence of a
(CP) basis in which
all CG coefficients

are real

equivalent

CP basis : ⇢ri
(u(g)) = ⇢ri

(g)⇤ 8 g 2 G and 8 i
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Twisted Frobenius-Schur Indicator

• How can one tell whether or not a given automorphism is a BDA?


• Frobenius-Schur indicator:


• Twisted Frobenius-Schur indicator
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The Bickerstaff–Damhus automorphism (BDA)

The twisted Frobenius–Schur indicator

+ How can one tell whether or not a given automorphism u is a BDA?

+ Frobenius–Schur indicator

FS(ri) :=
1

|G|
X

g2G
�ri

(g2) =
1

|G|
X

g2G
tr
⇥
⇢ri

(g)2
⇤

Bickerstaff and Damhus (1985); Kawanaka and Matsuyama (1990)

+ twisted Frobenius–Schur indicator

FSu(ri) =
1

|G|
X

g2G

⇥
⇢ri

(g)
⇤
↵�

⇥
⇢ri

(u(g))
⇤
�↵

+ crucial property

FSu(ri) =

8
<

:

+1 8 i, if u is a BDA,
+1 or � 1 8 i, if u is class–inverting and involutory,
different from ±1, otherwise.
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A Novel Origin of CP Violation

• For discrete groups that do not have class-inverting, involutory automorphism, CP is 
generically broken by complex CG coefficients (Type I Group) 

• Non-existence of such automorphism ⇔ Physical CP violation 
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Main messages of the previous talk

Main messages of the previous talk

+ Not every outer automorphism defines a physical CP transformation!

+ Three types of groups

Discrete (flavor)

symmetry G

Type I groups GI:

generic settings based on
GI do not allow for a
physical CP transformation

Type II: one can
impose a physical
CP transformation

Type II A groups GII A:

there is a CP basis in
which all CG’s are real

Type II B groups GII B:

there is no basis in which
all CG’s are real

M.-C.C, M. Fallbacher, K.T. Mahanthappa, 
M. Ratz, A. Trautner, NPB (2014)

CP Violation from Group Theory!

no class-
inverting 
involutory 

automorphism 
BDA 

non-BDA, class- 
inverting 

automorphism  



Examples

• Type I: all odd order non-Abelian groups


• Type IIA: dihedral and all Abelian groups


• Type IIB
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group 5 o 4 T7 �(27) 9 o 3

SG (20,3) (21,1) (27,3) (27,4)

(a) Examples for type I groups. Generally,
all odd order non–Abelian groups are of this
type with the caveat of groups that have a
class–inverting automorphism that squares
to a non–trivial outer one.

group S3 Q8 A4 3 o 8 T0
S4 A5

SG (6,1) (8,4) (12,3) (24,1) (24,3) (24,12) (60,5)

(b) Examples for type II A groups. The dihedral and all Abelian
groups are also of this type.

group ⌃(72) (( 3 ⇥ 3)o 4)o 4

SG (72,41) (144,120)

(c) Examples for type II B groups.

Table 2.1: Examples for the three types of groups: (a) I, (b) II A and (c) II B with their
common names and SmallGroups library ID of GAP [15].

with unitary W and

⌃ =

8
>>>>>>><

>>>>>>>:

⌃+ = , if U is symmetric,

⌃� =

0

BBBBB@

1
�1

. . .
1

�1

1

CCCCCA
, if U is anti–symmetric.

(2.38)

Note that, since representation matrices always have full rank, the anti–symmetric case
does not arise for odd–dimensional irreps [20], i.e. ⌃ always has full rank. We can, hence,
perform the unitary basis change

ri ! W
†
ri
ri , ⇢ri(g) ! W

†
ri
⇢ri(g)Wri 8 g 2 G , (2.39)

such that in the new basis the matrices Uri take the simple form

Uri ! W
†
ri
Uri W

⇤
ri

= ⌃ri . (2.40)

For type II A groups, all the ⌃ri ’s equal the identity matrix and the new basis is a CP
basis. In this basis all Clebsch–Gordan coe�cients are real [16].
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Modular Flavor Symmetries
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Artwork by Shreya Shukla



Donuts = TORI

30two cycles

constructed 
from 

parallelogram



Modular Symmetries

31

edges ⇒ lattice basis vectors
points in plane identified if 
differ by a lattice translation

Equivalent TORI related 
by Modular Symmetries



Modular Symmetries

• Two basic transformations:

• In complex coordinates: modulus 𝜏 = e2/e1

• S and T generate              and satisfy

32



• Finite Modular Group (quotient group):                   where 
principal congruence group 𝜞(N) is 

• Generators of the quotient group 𝜞N satisfy

• Some examples

33

Modular Symmetries

𝜞2 ≃ S3,    𝜞3 ≃ A4,     𝜞4 ≃ S4,     𝜞5 ≃ A5

S2 = 1,   (ST)3 = 1,   TN = 1

𝜞



• Imposing modular symmetry 𝜞 on the Lagrangian:

• Yukawa Couplings = Modular Forms at level “N” w/ weight “k”

34

Modular Symmetries

representation matrix of 𝜞N 

representation matrix of 𝜞N 

k = ki1 + ki2 + … + kin

ki : integers

Feruglio (2017)



• Weinberg Operator

• Traditional A4 Flavor Symmetry

• Yukawa Coupling Y → Flavon VEVs (A4 triplet, 6 real parameters)

• Modular A4 Flavor Symmetry

• Yukawa Coupling Y → Modular Forms (A4 triplet, 2 real parameters)
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A Toy Modular A4 Model
Feruglio (2017)

⇒

⇒



• Level (N) = 3, Weight (k) = 2, in terms of Dedekind eta-function

36

Modular Forms
Feruglio (2017)



• Input Parameters:

• Predictions:

37

Feruglio (2017)

A Toy Modular A4 Model



• Bottom-Up:

• reducing the number of parameters: in 
extreme case, entire neutrino mass matrix 

controlled by 𝜏
• Traditional flavor symmetries: corrections to 
kinetic terms generally sizable

• Setup with modular symmetries: corrections 
to kinetic terms can be under control

• Top-Down:

• Modular flavor symmetries from strings

• Modular Symmetries from magnetized tori  
38

Modular Symmetry: Bottom-Up Meet Top-Down

MCC, Knapp-Pérez, Ramos-Hamud, Ramos-
Sánchez, Ratz, Shukla (2021)

e.g.  Almumin, MCC, Knapp-Pérez, Ramos-
Sánchez, Ratz, Shukla (2021)

Feruglio (2017)

e.g.  Baur, Nilles, Trautner, Vaudrevange

Leurer, Nir, Seiberg (’93); Dudas, Pokorski, Savoy (’95); 
M.-C.C, M. Fallbacher, M. Ratz, C. Staudt  (2012) 



Rabi as a role model on 
Mentoring
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Outlook
• Fundamental origin of fermion mass & mixing patterns still unknown

• Uniqueness of Neutrino masses offers exciting opportunities to explore 

BSM Physics

• New Tools/insights: 


• Non-Abelian Discrete Flavor Symmetries

• Deep connection between outer automorphisms and CP


• Modular Flavor Symmetries

• Enhanced predictivity of flavor models

• Possible connection to string theories


• Having diverse perspectives/approaches drives intellectual excellence

41



Thank you, Rabi, for guiding us with your 
always bright insights. Congratulations! 



Back Up Slides



Summary

• NOT all outer automorphisms correspond to physical CP 
transformations 

• Condition on automorphism for physical CP transformation 

44
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Discrete Family Symmetries and Origin of CP Violation Generalizing CP transformations

Constraints on generalized CP transformations

Constraints on generalized CP transformations

+ generalized CP transformation

�(x)
fCP7��! UCP�

⇤( P x)

fields of the theory/modelP (t,~x) = (t,�~x)
Holthausen, Lindner, and Schmidt (2013)

+ consistency condition

⇢
�
u(g)

�
= UCP ⇢(g)⇤UCP

† 8 g 2 G

automorphism u : G ! Grepresentation matrixblock–diagonal unitary matrix
+ further properties:

• u has to be class–inverting
the consistency condition

⇢ri

�
u(g)

�
= Uri

⇢ri
(g)⇤U

†
ri
8 g 2 G and 8 i

implies

�ri (u(g)) = tr
⇥
⇢ri

(u(g))
⇤
= tr

⇥
Uri
⇢ri

(g)⇤U
†
ri

⇤

= tr
⇥
⇢ri

(g)
⇤⇤
= �ri

(g)⇤ = �ri
(g�1) 8 i

group characters

• in all known cases, u is equivalent to an automorphism of order two

bottom–line:
u has to be a class–inverting (involutory) automorphism of G

Discrete Family Symmetries and Origin of CP Violation Example for a type I group: �(27)

CP–like symmetries

CP–like symmetries

+ outer automorphism u5

X ! X
⇤ , Z ! Z

⇤ , Y ! Y
⇤ ,  ! Uu5

⌃ & ⌃ ! Uu5
 

Uu5
=

0

@
0 0 !2

0 1 0

! 0 0

1

A

+ does not lead to a vanishing decay
asymmetry

Â in general, imposing an outer
automorphism as a symmetry does
not lead to physical CP
conservation!

E Holthausen et al. (2013)

Â CP–like symmetry

outer automorphisms

(generalized)

CP trans-

formations

class inverting, 
involutory 

automorphisms

physical CP 
transformations



Summary

• For discrete groups that do not have class-inverting, involutory automorphism, CP is 
generically broken by complex CG coefficients (Type I Group) 

• Non-existence of such automorphism ⇔ physical CP violation

45

Discrete Family Symmetries and Origin of CP Violation Introduction

Main messages of the previous talk

Main messages of the previous talk

+ Not every outer automorphism defines a physical CP transformation!

+ Three types of groups

Discrete (flavor)

symmetry G

Type I groups GI:

generic settings based on
GI do not allow for a
physical CP transformation

Type II: one can
impose a physical
CP transformation

Type II A groups GII A:

there is a CP basis in
which all CG’s are real

Type II B groups GII B:

there is no basis in which
all CG’s are real

CP Violation from Group Theory!

M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, 
A. Trautner, NPB (2014)
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Example for a type I group:

�(27)
• decay asymmetry in a toy model
• prediction of CP violating phase from group theory



Toy Model based on Δ(27)

• Field content


• Interactions
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Decay amplitudes in a toy example based on �(27)

Decay amplitudes in a toy example based on �(27)

+ Fields
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• Decay asymmetry


• cancellation requires delicate adjustment of relative phase

• for non-degenerate MS and MX: 


• phase φ unstable under quantum corrections 

• for 


• phase φ stable under quantum corrections 

• relations cannot be ensured by outer automorphism of Δ(27) 

• require symmetry larger than Δ(27)
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• Decay asymmetry


• properties of ε

• invariant under rephasing of fields

• independent of phases of f and g

• basis independent
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✏Y!�� =
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�(Y ! ��) + �(Y ⇤ ! ��)
(1)
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Let us now study the decay Y !   . Interference between tree–level and one–loop
diagrams (figures 3(a)– 3(c)) leads to a CP asymmetry "Y!  , which is proportional to
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Here IS = I(MS,MY ) and IX = I(MX ,MY ) denote appropriate phase space factors and
the loop integral, which are non–trivial functions of the masses of S and Y , and X and
Y , respectively. Note that "Y!  is

(i) invariant under rephasing of the fields,

(ii) independent of the phases of f and g, and

(iii) independent of the chosen basis as it is proportional to the trace of coupling ma-
trices.

Notice, however, that the asymmetry can vanish if there is a cancellation between the two
terms, which would require a delicate adjustment of the relative phase ' := arg(h h⇤
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of h and h⌃. In what follows, we will argue that if such a cancellation occurs, this is
either (i) a consequence of a larger discrete symmetry than �(27) being present or (ii)
it is not immune to quantum corrections.

In the first case, a new symmetry has to be present which relates S and X in such
a way as to guarantee MS = MX and |g| = |f |, as well as h and h⌃ to warrant
' = �2⇡/6. Clearly, this cannot be due to an outer automorphism and, hence, no CP
transformation of a�(27) setup since such transformations never relate the trivial singlet
10 to other representations. If such a symmetry exists, it has to enhance the original
flavor symmetry of the setup, and it is, therefore, no longer appropriate to speak of a
�(27) model.

In the second case, given that Im [IS] 6= Im [IX ] for MS 6= MX , an adjustment which
cancels the asymmetry will require arg(h h⇤

⌃
) to be di↵erent from �2⇡/6 in general.

Note that the diagrams of figures 3(b) and 3(c) also yield vertex corrections which are
relevant for the renormalization group equations (RGEs) for h and h⌃. These equations
are given by11
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where t = ln(µ/µ0) is the logarithm of the renormalization scale, a, b and c are real
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Let us now study the decay Y !   . Interference between tree–level and one–loop
diagrams (figures 3(a)– 3(c)) leads to a CP asymmetry "Y!  , which is proportional to
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⇤
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Y , respectively. Note that "Y!  is
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(ii) independent of the phases of f and g, and
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of h and h⌃. In what follows, we will argue that if such a cancellation occurs, this is
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flavor symmetry of the setup, and it is, therefore, no longer appropriate to speak of a
�(27) model.

In the second case, given that Im [IS] 6= Im [IX ] for MS 6= MX , an adjustment which
cancels the asymmetry will require arg(h h⇤
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) to be di↵erent from �2⇡/6 in general.

Note that the diagrams of figures 3(b) and 3(c) also yield vertex corrections which are
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Discrete Family Symmetries and Origin of CP Violation Example for a type I group: �(27)

Decay amplitudes in a toy example based on �(27)

CP conservation vs. symmetry enhancement

+ replace S ⇠ 10 by Z ⇠ 18 y interaction

L Z

toy = g
0
h
Z18
⌦
�
 ⌃

�
14

i

10

+ h.c. = (G0)ij Z i⌃j + h.c.

G
0 = g

0

0

@
0 0 !2

1 0 0

0 ! 0

1

A

and leads to new interference diagram

⌃

⌃

SY

 

 

H⌃

F
†

F

!

⌃

⌃

ZY

 

 

H⌃

G
0†

G
0

Â different contribution to decay asymmetry:

+ total CP asymmetry of the Y decay vanishes if

8
<

:

(i) MZ =MX

(ii) |g| = |g0|
(iii) ' = 0

' = arg(h h
⇤
⌃)

+ relations (i)—(iii) can be due to an outer automorphism

X
u3 ! Z , Y

u3��! Y ,  u3��! Uu3
⌃C & ⌃

u3��! Uu3
 C

Uu3
=

0

@
1 0 0

0 !2
0

0 0 !2

1

A

requires q⌃ = �q 

. . . BUT this enlarges �(27)! SG(54,5) ' �(27) o u3

2

SG(54,5): group name from GAP library

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)
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Decay amplitudes in a toy example based on �(27)
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Discrete Family Symmetries and Origin of CP Violation Example for a type I group: �(27)

Spontaneous CP violation with calculable CP phases

Spontaneous CP violation with calculable CP phases
field X Y Z  ⌃ �

�(27) 11 13 18 3 3 10

U(1) 2q 0 2q q �q 0

+ SG(54,5):

8
<

:

(X,Z) : doublet
( ,⌃C) : hexaplet
� : non–trivial 1–dim. representation

+ non–trivial h�i breaks SG(54,5)! �(27)

non–trivial 1i,0 under SG(54,5)

+ allowed coupling leads to mass splitting

Â CP asymmetry with calculable phases

"
Y!  / |g|2 |h |2 Im

⇥
!

⇤ �
Im

⇥
IX

⇤
� Im

⇥
IZ

⇤�

phase predicted by group theory

Â group–theoretical origin of CP Chen and Mahanthappa (2009)
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� : non–trivial 1–dim. representation

+ non–trivial h�i breaks SG(54,5)! �(27)

non–trivial 1i,0 under SG(54,5)

+ allowed coupling leads to mass splitting

L �
toy
� M

2
�
|X |2 + |Z|2

�
+


µp
2
h�i

�
|X |2 � |Z|2

�
+ h.c.

�

CG coefficient of SG(54,5)

Â CP asymmetry with calculable phases

"
Y!  / |g|2 |h |2 Im

⇥
!

⇤ �
Im

⇥
IX

⇤
� Im

⇥
IZ

⇤�

phase predicted by group theoryÂ group–theoretical origin of CP Chen and Mahanthappa (2009)

Group theoretical origin 
of CP violation!

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

M.-C.C., K.T. Mahanthappa (2009)

∆(27) ⊂



Some Outer Automorphisms of Δ(27)

• sample outer automorphisms of Δ(27)


• twisted Frobenius-Schur indicators


• none of the ui maps all representations to their conjugates

• however, it is possible to impose CP in (non-generic) models, where only a subset 

of representations are present, e.g. 

• CP conservation possible in non-generic models


• e.g. some well-known multiple Higgs model
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Discrete Family Symmetries and Origin of CP Violation Example for a type I group: �(27)

Decay amplitudes in a toy example based on �(27)

Some of the outer automorphisms of �(27)

+ sample outer automorphisms of �(27)

u1 : 11 $ 12 , 14 $ 15 , 17 $ 18 , 3! Uu1
3⇤

u2 : 11 $ 14 , 12 $ 18 , 13 $ 16 , 3! Uu2
3⇤

u3 : 11 $ 18 , 12 $ 14 , 15 $ 17 , 3! Uu3
3⇤

u4 : 11 $ 17 , 12 $ 15 , 13 $ 16 , 3! Uu4
3⇤

u5 : 1i $ 1i
⇤ , 3! Uu5

3

+ twisted Frobenius–Schur indicators

recall

FSu(ri) =
1

|G|
X

g2G

⇥
⇢ri

(g)
⇤
↵�

⇥
⇢ri

(u(g))
⇤
�↵

crucial property

FSu(ri) =

8
>><

>>:

+1 8 i, if u is a BDA,
+1 or � 1 8 i, if u is class–inverting

and involutory,
different from ±1, otherwise.

Bickerstaff–Damhus automorphism (BDA) u

⇢ri
(u(g)) = Uri

⇢ri
(g)⇤U

†
ri
8 g 2 G and 8 i

w/ unitary symmetric Uri

R 10 11 12 13 14 15 16 17 18 3 3
FSu1

(R) 1 1 1 0 0 0 0 0 0 1 1
FSu2

(R) 1 0 0 1 0 0 1 0 0 1 1
FSu3

(R) 1 0 0 0 0 1 0 1 0 1 1
FSu4

(R) 1 0 0 1 0 0 1 0 0 1 1
FSu5

(R) 1 1 1 1 1 1 1 1 1 0 0

Â none of the ui maps all representations to their conjugates

+ however, it is possible to impose CP for models in which only
subsets of the representations are introduced, e.g.
{ri} ⇢ {10,15,17,3,3}

+ CP conservation in non–generic �(27) models possible
e.g. some well–known multi–Higgs models Branco, Gerard, and Grimus (1984)
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CP–like symmetries

+ outer automorphism u5

X ! X
⇤ , Z ! Z

⇤ , Y ! Y
⇤ ,  ! Uu5

⌃ & ⌃ ! Uu5
 

Uu5
=

0

@
0 0 !2

0 1 0

! 0 0

1

A

+ does not lead to a vanishing decay
asymmetry

Â in general, imposing an outer
automorphism as a symmetry does
not lead to physical CP
conservation!

E Holthausen et al. (2013)

Â CP–like symmetry

outer automorphisms

(generalized)

CP trans-

formations
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