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One of the key ingredients of physics beyond the standard model is widely believed
to be a symmetry between the fermions and the bosons known as supersymme-
try. The reason for this is that the milder divergence structure of field theories
with this symmetry may explain why the electroweak scale (or the Higgs mass )
is stable under radiative corrections. Two other reasons adding to this belief are
: (i) a way to understand the origin of the electroweak symmetry breaking as a
consequence of radiative corrections and (ii) the particle content of the minimal
supersymmetric model that leads in a natural way to the unification of the three
gauge couplings of the standard model at a high scale. This last observation sug-
gests that at scales close to the Planck scale, all matter and all forces may unify
into a single matter and a single force leading to a supersymmetric grand unified
theory. It is the purpose of these lectures to provide a pedagogical discussion of
the various kinds of supersymmetric unified theories beyond the minimal super-
symmetric standard model (MSSM) including SUSY GUTs and present a brief
overview of their implications. Questions such as proton decay, R-parity violation,
doublet triplet splitting etc. are discussed. Exhaustive discussion of SU(5) and
SO(10) models and less detailed ones for other GUT models such as those based
on Eg, SU(5) x SU(5), flipped SU(5) and SU(6) are presented.

Third Edition




Two Physics lessons from Rabi:

Symmetries = reduction in # of parameters

Novel Fundamental Origin of CP Violation

Models for Geometric CP Violation with Extra Dimensions
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Abstract

ent paper, two of us (D.C. and R.N.M.) proposed a new way to break CP
geometrically using orbifold projections. The mechanism can be realized
dimensional brane bulk picture. In this paper, we elaborate on this
hd provide additional examples of models of this type. We also note the
logical implications of some of these models.

Abstract

We discuss how CP symmetry can be broken geometrically through orbifold
construction in hidden extra dimensions in the context of D-brane models for
particle unifications. We present a few toy models to illustrate the idea and
suggest ways to incorporate this technique in the context of realistic models.
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Where Do We Stand?

Gonzalez-Garcia, Maltoni, Schwetz (NuFIT),

e Latest 3 neutrino global analysis: 2111.03086
Normal Ordering (Best Fit) Inverted Ordering (Ax? = 7.0)
bfp £1o 30 range bfp 1o 30 range
sin” 615 0.30410012 0.269 — 0.343 0.30410-0°3 0.269 — 0.343
8 o 0.77 0.78
5 n/ 33.451077 31.27 — 35.87 33451078 31.27 — 35.87
£ sin®6o 0.450"0 012 0.408 — 0.603 0.570"0 055 0.410 — 0.613
B 623/° 2.1+11 39.7 — 50.9 49.0+99 39.8 — 51.6
Q
§ sin? 613 0.022461 000062 0.02060 — 0.02435  0.02241 109077 0.02055 — 0.02457
4 013/° 8.621012 8.25 — 8.98 8.611012 8.24 — 9.02
-
g cp/° 230138 144 — 350 278122 194 — 345
Am, 7 49+021 > 7 49+021 > 4
_Amy 2.51010:927 2.430 — +2.593 2.49010.9% 2.574 — —2.410
10-3 oV2 +2510 5027 2430 = +2. —2490 008  —49/4— —2

= hints of 023 # n/4
= expectation of Dirac CP phase §

= slight preference for normal mass ordering



Where Do We Stand?

Normal Ordering

Inverted Ordering
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Where Do We Stand?
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Open Questions - Neutrino Properties “ g

T

== Majorana vs Dirac?

== CP violation in lepton sector? To understand

== Absolute mass scale of neutrinos? some of these
properties

s~ Mass ordering: sign of (Am;32)? zBMIFysIes

= Sterile neutrino(s)?

= Precision: 023 > /4, 023 < /4, 023 = /4 ?

< Additional Neutrino Interactions?

a suite of current and upcoming
experiments to address these puzzles




Open Questions - Theoretical “ @

== Smallness of neutrino mass: = Flavor structure:

e T

@ ® ®
: S b - - -
' @ o o
LMA-MSW solution e n T
I 1 [ [ )
V \'3
Vi ’ o 4= normal hierarchy I t 1 Ivi
. eptonic mixing
y Vs 44—  inverted hierarchy
3 vy
: <4—  nearly degenerate
V1
0.0001 0.01 '; 1(;0 10000 1e+06 1e+08 1e-:10 le+12
meV eV keV MeV GeV TeV

Fermion mass and hierarchy

quark mixing



Why Should We Care?

Understanding a wealth of data, fundamentally

SM flavor sector: no understanding of significant fraction (22/28)
of SM parameters; (c.f. SM gauge sector)

Neutrinos as window into BSM physics

e neutrino mass generation unknown (suppression mechanism, scale)

e Uniqueness of neutrino masses =» connections w/ NP frameworks

Neutrinos affords opportunities for new explorations
e New Tools
e May address other puzzles in particle physics

e Window into early Universe

e UV connection
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Neutrino Mass and Spontaneous Parity Nonconservation

Smallness of
Department of Physics, City College of New York, New Yovk, New Yovk 10031

and

o Goran Senjanovié
eu l ' n o ass es Department of Physics and Astvonomy, University of Mavyland, College Park, Maryland 20742
(Received 10 December 1979)

In weak-interaction models with spontaneous parity nonconservation, based on the gauge
group SU(2),®SU(2) xg®U(1), we obtain the following formula for the neutrino mass: my,
a‘me“/gmwk, where Wy is the gauge boson which mediates right-handed weak interactions.
This formula, valid for each lepton generation, relates the maximality of observed parity
nonconservation at low energies to the smallness of neutrino masses.

PACS numbers: 11.30.Er, 11.30.Ly, 12.30.Ez, 14.60.Gh.

It is attractive to suppose that observed parity at high energies. This idea has been implement-
nonconservation in weak interactions is only a ed in unified gauge theories of electroweak inter-
low-energy phenomenon, which ought to disappear actions based on the gauge group SU(2),® SU(@2),

912
VoLuME 44, NUMBER 14 PHYSICAL REVIEW LETTERS 7 AprIL 1980
PHYSICAL REVIEW D VOLUME 23, NUMBER 1 1 JANUARY 1981

Seesaw

Neutrino masses and mixings in gauge models with spontaneous parity violation

Rabindra N. Mohapatra*
Department of Physics, The City College of the City University of New York, New York, New York 10031

Goran Senjanovic gb N ’ gb
Fermi National Accelerator Laboratory, Batavia, Illinois 60510 \ s
and Department of Physics, University of Maryland, College Park, Maryland 20742 N HMA 7
(Received 8 August 1980) N

of parity invariance is spontaneous, lead most naturally to a massive neutrino. Assuming the neutrino to be a
Majorana particle, we show that smallness of its mass can be understood as a result of the observed maximality of
parity violation in low-energy weak interactions. This result is shown to be independent of the number of
generations and unaffected by renormalization effects. Phenomenological consequences of this model at low energies

are studied. Observation of neutrinoless double-8 decay will provide a crucial test of this class of models. Ty p e | |
Implications for rare decays such as u —ey, u—»eee, etc. are also noted. It is pointed out that in the realm of neutral- Y
current phenomena, departure from the predictions of the standard model for polarized-electron-hadron scattering, A

forward-backward asymmetry in e *e ~—u *u -, and neutrino interactions has a universal character and may be g
therefore used as a test of the model. e e S aW g

Unified electroweak gauge theories based on the gauge group SU(2), X SU(2); X U(1), _,, in which the breakdown Y
|
|
|
|




Non-Abelian Discrete Flavor Symmetries

- Large neutrino mixing motivates discrete flavor

symmetries
* A4 (tetrahedron)
* T" (double tetrahedron)
« S3 (equilateral triangle)

« S4 (octahedron, cube)

<— family symmetry —>

* As (icosahedron, dodecahedron)

[Eligio Lisi for NOW2008 ]

(T",SU(2), ...

GUT Symmetry
SU(5), SO(10), ...

charged lepton
sector

Gr e.g. A4

neutrino

sector




Tri-bimaximal Neutrino Mixing

e Latest Global Fit (30) Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou (2020)
sin® B3 = 0.437 (0.374 — 0.626) [Blerog ~ 49.2°]
sin® 015 = 0.308 (0.259 — 0.359) [Bler1o ~ 33.4°]
sin® 013 = 0.0234 (0.0176 — 0.0295) [Blery5 ~ 8.57°]

¢ Tri-bimaximal Mixing Pattern | -
Harrison, Perkins, Scott (1999)

([ V273 VI3 o \ $in? Oaem, TBM = 1/2 sin® 0o, meM = 1/3

Urpuy = | —/1/6 J/1/3 —/1]2

sin ‘913,TBM = 0.

13



Neutrino Mass Matrix from A4

Ma, Rajasekaran (2001); Babu, Ma,Valle (2003);
Altarelli, Feruglio (2005)

e Imposing A4 flavor symmetry on the Lagrangian

¢ A4 spontaneously broken by flavon fields

200+u =& —&o
M, = —&o 260 u—¢&o
& u—2& 2&

rélative strengthsﬂ f

e always diagonalized by TBM matrix, independent of the two free
parameters

Neutrino Mixing
Angles from Group
Theory

(V23 1V 0 )
Urpm = | —+/1/6 1/3/3 —1/V/2

\ —V1/6 1/v3 1/V2

14



CP Violation in Nature

* CP violation: required to explain matter-antimatter asymmetry
e So far observed only in flavor sector
e SM: CKM matrix for the quark sector
e experimentally established 8ckm as major source of CP violation
e not sufficient for observed cosmological matter-antimatter asymmetry
e Search for new source of CP violation:
e CP violation in neutrino sector

e if found = phase in PMNS matrix

e Discrete family symmetries:
* suggested by large neutrino mixing angles
* neutrino mixing angles from group theoretical CG coefficients

e may come from orbifold compactification

Discrete (family) symmetries & Physical CP violation



Outer Automorphisms < CP

e Outer automorphisms of the Lorentz group: P, T, C
e C and P violation tied to parity, but CP violation less understood
o Left-Right parity in left-right symmetric/Pati-Salam models
e Gauge Origin of Left-Right Parity:
e Additional Z; in Pati-Salam models Pati, Salam (1974)

[SU(4) x SU(2)r, x SU(2)R]| = Zo

 Additional Z: in left-right symmetric models Mohapatra, Senjanovic (1980)

[SU(B)C X SU(2)L X SU(Q)R X U(l)B_L] ~ ZQ

* Z,R can be preserved in SO(10) GUTs by giving a VEV to 54-plet

Kibble, Lazarides, Shafi (1982); Chang, Mohapatra, Parida (1984)

e Automatic preservation through orbifold compactification

Biermann, Mtter, Parr, Ratz, Vaudrevange (2019)

16



Outer Automorphisms < CP

e Not all models can have left-right parity
e Gauge symmetry

e Particle content

e For a long time, it was assumed that CP (which is also an outer
automorphism) can be imposed on models with arbitrary (gauge)
symmetry and particle content

e True for continuous symmetries

e Fail for some discrete symmetries

e CP is an outer automorphism; But not all outer automorphisms are CP

e e.g. Left-right parity for Strong CP problem

17



A Novel Origin of CP Violation ...

Phys. Lett. B681, 444 (2009)

« Complex CG coefficients in certain discrete groups = explicit CP violation

+ Real Yukawa couplings, real scalar VEVs
« CPV in quark and lepton sectors purely from complex CG coefficients
* No additional parameters needed = extremely predictive model!

— H-| A3 <H> <H> <H> <H>
Basic idea _l_ _J,_ I
real coupling =Y = + + + EL
Li Ri L R2 L. Ri L. R2

Discrete
symmetry G (L) (RiR) | Gy Y<A> | Cp [Y<A»

r..

CS Y<A\> Cua Y<A3>

- Scalar potential: if Zs symmetric = (A1) = (A2) = (A3) = (A) real

« Complex effective mass matrix: phases determined by group theory :C.,2,3,4:
( L L, ) complex CG
; coefficients of
M:(Q Ca )Y(A) N G
C2 Ca g

18



Generalized CP Transformation

1= getting w/ discrete symmetry G

G and CP transformations do not commute

= generalized CP transformation Feruglio, Hagedorn, Ziegler (2013); Holthausen, Lindner, Schmidt (2013)

= invariant contraction/coupling in A4 or T

[$1, ® (x3 ®y3)11]10 o ¢ (X151 + W x2y2 + Wx3Y3)

(W= e2ri/3 )

== canonical CP transformation maps A4/T” invariant contraction to
something non—invariant

—_—

. - CP
w need generalized CP transformation CP: ¢ — ¢* as usual but

ES

1 &P "1 1 & )1
%k %

X9 — X3 & Y2 — Y3
X3 X Y3 x

19




Physical CP vs. Generalized CP Transformations

complex CGs => G and physical CP transformations do not commute

Generalized CP transformation:

DOx) > Uep®( P x)

<

contains all
reps in model

Necessary Consistency condition:
Holthausen, Lindner, Schmidt (2013)

p(u@) = Ucp p@*Ucp’ Vge@G

n wsiydiowoine

L(Px)

20



Physical CP vs. Generalized CP Transformations

complex CGs => G and physical CP transformations do not commute

n wsiydiowoine

L(Px)

Generalized CP transformation:

DOx) > Uep @ (P x)

Necessary Consistency condition:
Holthausen, Lindner, Schmidt (2013)

p(u@) = Ucp p@*Ucp’ Vge@G

However, GCP may not correspond
to physical CP transformation
> for GCP = physical CP:
more stringent consistency
condition

21



Physical CP vs. Generalized CP Transformations

—_—

* generalized CP transformation  q(x) R Ucp @ (P x)

« Necessary consistency condition

p(u(g)) = Ucp p@) UCPT Yge(@ Holthausen, Lindner, Schmidt (2013)
o . g M.-C.C., M. Fallbacher, K.T. Mahanth
- Necessary and sufficient consistency condition M. Ratz, A, Trautrior (20 13;“ appa,

physical CP

22



Physical CP vs. Generalized CP Transformations

o~

* generalized CP transformation  q(x) R Ucp @ (P x)

« Necessary consistency condition

p(u(g)) = UCP p(g)* UCPT Vg e (G Holthausen, Lindner, Schmidt (2013)
1CI i g M.-C.C., M. Fallbacher, K.T. Mahanth
- Necessary and sufficient consistency condition M. Ratz, A, Trautrior (20 13;“ appa,

physical CP

u has to be a class-inverting, involuntary automorphism of G
> non-existence of such automorphism in certain groups
> explicit physical CP violation

23



How (Not) to Generalize CP

proper CP transformations

1= map field operators to their own
Hermitean conjugates

CP-like transformations

1= map some field operators to
some other operators

1 violation of physical CP is

iS| o =3 h transformations hav
prerequisite for a non-trivial such transiormations have

sometimes been called

. 9 2 “generalized CP
CE-f) - (’ — f) transformations” in the literature

Eif =

: 2 2\ |2
F@E—f)+ (’ - f) == however, imposing CP-like
transformations does not imply

hysical CP conservation
= connection to observed G, PRy

baryogenesis & ... = NO connection to observed
G, baryogenesis & ...

24



The Bickerstaff-Damhus automorphism (BDA)

® Bickerstaff-Damhus automorphism (BDA) u Bickerstaff, Damhus (1985)

pr(u@) = Uy pr(g)"' U, VgeGandVi (*)

\

[ unitary & symmetric ]

® BDA vs. Clebsch-Gordan (CG) coefficients

equivalent
existence of a

dBDA u (CP) basis in which

fulfilling (%) all CG coefficients
are real

25



Twisted Frobenius-Schur Indicator

® How can one tell whether or not a given automorphism is a BDA?

® Frobenius-Schur indicator:

1 1
FSro) = > @) = G > tron@)?]

geG geG
+1, if r; is a real representation,
FS(r;) = 0, if r; is a complex representation,
-1, if r; is a pseudo—real representation.
e Twisted Frobenius-Schur indicator Bickerstaff, Damhus (1985); Kawanaka, Matsuyama (1990)
1
FS,(ry) = @ gze; [pri(g)] ap [pri(u(g))]ﬁa

+1 Vi, if u is a BDA,
FS,(r;) = +lor -1 Vi, if u is class—inverting and involutory,
different from +1, otherwise.

26



A Novel Orlglﬂ OF CP Violation M.-C.C, M. Fallbacher, K.T. Mahanthappa,

M. Ratz, A. Trautner, NPB (2014)

 For discrete groups that do not have class-inverting, involutory automorphism, CP is
generically broken by complex CG coefficients (Type | Group)

- Non-existence of such automorphism & Physical CP violation

CP Violation from Group Theory!

Discrete (flavor)

symmetry G
no class- Type II: one can
inverting impose a physical non-BDA, class-
involutory CP transformation invert,ing
automorphm | BDA I automorphism

| Type Il A groups Gy a:
generic settings basedon |  there is a CP basis in there is no basis in which

Type Il B groups Gy B:

| GI dO not allow for a ‘ which all CG’s are real all CG’s are real

27




Examples

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

e Type I: all odd order non-Abelian groups

group | Zis X 2y
SG | (20,3)

e Type IIA: dihedral and all Abelian groups

group | S3 | (g Ay | Z3 % Ts | :
SG (6.0 | (5.4) | (123) | (241) |

e Type IIB

1 (Zs X Zs) % Zy) x Zy4
; (144,120)

28



Modular Flavor Symmetries

Artwork by Shreya Shukla



Donuts = TORI

N N N

constructed
from
parallelogram

identify

two cycles



Modular Symmetries

S \

0 e

edges = lattice basis vectors

&

A \

points in plane identified if
differ by a lattice translation

Equivalent TORI related
by Modular Symmetries
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Modular Symmetries

e Two basic transformations:

, T 1
I': e ée,=e+¢e ~y=|g
0

|1

S:emée =6 and e e, =-6 r»yz(_] (]))::S

e In complex coordinates: modulus 7 = ez/e;

—1

S T =
T+— — Qand Tl—>T+] @ @
T T

T

e S and T generate

SL(2,Z) and satisfy

2 = (ST)° =1

32



Modular Symmetries

e Finite Modular Group (quotient group): I'n =T/ [(N) here
principal congruence group I(N) is

I'(N):{(g Z)ESL(Z,Z)/ZQ;(g g)z(é ?) mod N}

e Generators of the quotient group Iy satisfy

S2=1, (ST)3 =1, T™N=1

® Some examples

I =S3, I3=A4s I4,=9S; Is=A~As



Modular Symmetries

Feruglio (2017)

e Imposing modular symmetry I'on the Lagrangian.

NZJ D Z Yi]-* ‘i.).w viees p QZI(DLZ o ®l’

2!

aT +b
ct+d’

T3 4T =

®; — (cT+d)® pr.(v)®@;, wherey := (Z Z)

ki : integers : representation matrix of Iy

e Yukawa Couplings = Modular Forms at level "N” w/ weight “k”“

K = kil + ki2+ e + kin

fly) = (et + A) ¥ lon()]; ()

& representation matrix of Iy 34



A Toy Modular A; Model

Feruglio (2017)

]
e Weinberg Operator 7, = 7 [(He- D) Y (Hu- L)y
¢ Traditional A4 Flavor Symmetry

e Yukawa Coupling Y — Flavon VEVs (A, triplet, 6 real parameters)

| @ 2 (20 -¢ -b
Y= (o)=| b = m, = |-c 2b -a
c -b -a 2c

® Modular A4 Flavor Symmetry

e Yukawa Coupling Y — Modular Forms (A4 triplet, 2 real parameters)

Yi(7) 2 (2%(7) =Ya(r) —Ya(7)
Y — ( Ya(7) ) - m, = W“ —Ya(r) 2Ya(7) —Vl(r)]
Y3(7) -Yo(r) =Yi(r) 2Y3(7)

35



Modular Forms

uglio (2017)

Fer

c
2
g —
m —_
u T g
< 2S
n(
nm ~ | .))_.))_
Q o™ N | N |
+43+3 +_3 o
o | Sl s
cC — el Bl
H ™ o~ ln = ln =
Q H 2| H{om
o - - 3 N
Q S| l_l w
) = = =
(ST -+ N}l |~
o HelHee Tl
w — Ml\T H_3T3
£ I =l = =
5 — ==
+ =T 3 3
£ + + v
n/_l N~ T NN TN A~
Bl ke B ke B Km
" Sy S e N
— =S =Is =T
k 1 J L
~ . . e
.|.m = | | & | | &
D
M | | |
o ~ ~ \~|l}
o = = —
"
N
Z
~
o
>
Q
-
[

— _i2nT
q=E¢€

n(r)=g"* ] (1 -q"
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A Toy Modular A; Model

e Input Parameters:
7 = 0.0111 + 0.99463 ve /A

e Predictions:

Am?
50— = (0.0292
|Amc2ztm| 0 O 9
Sin2 912 = 0.295 Sin2 913 = 0.0447
ocP _ 1 55 2 _ 0.2
m m

my = 4.998 x 1072 eV ms = 5.071 x 1072 eV

Feruglio (2017)

Sil’l2 923 = (0.651

31 _ 1.80

™

ms = 7.338 x 107 eV

37



Modular Symmetry: Bottom-Up Meet Top-Down

e Bottom-Up:

¢ reducing the number of parameters: in
extreme case, entire neutrino mass matrix

controlled by 7 Feruglio (2017)

e Traditional flavor symmetries: corrections to

canonical
kinetic terms modular forms

I t d't!B . E l
A4ra 1 % s

(X> = Xdiag

modular forms
+
canonical kinetic terms

. . . Leurer, Nir, Seiberg ('93); Dudas, Pokorski, Savoy ('95);
klne+|c ferms general Iy S|zab|e M.-C.C, M. Fallbacher, M. Ratz, C. Staudt (2012)

e Setup with modular symmetries: corrections
to Kinetic terms can be under control

e Top-Down:
® Modular flavor symmetries from strings

® Modular Symmetries from magnetized tori

MCC, Knapp-Pérez, Ramos-Hamud, Ramos-
Sanchez, Ratz, Shukla (2021)

e.g. Baur, Nilles, Trautner,Vaudrevange

e.g. Almumin, MCC, Knapp-Pérez, Ramos-

Sanchez, Ratz, Shukla (2021) 38




Rabi as a role model on
Mentoring
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Outlook

Fundamental origin of fermion mass & mixing patterns still unknown

Uniqueness of Neutfrino masses offers exciting opportunities to explore
BSM Physics

New Tools/insights:
e Non-Abelian Discrete Flavor Symmeftries

e Deep connection between outer automorphisms and CP

cla_ss inverting, physical CP
involutory :
transformations

automorphisms

e Modular Flavor Symmetries
» Enhanced predictivity of flavor models

 Possible connection to string theories

Having diverse perspectives/approaches drives intellectual excellence
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Summary

* NOT all outer automorphisms correspond to physical CP
transformations

- Condition on automorphism for physical CP transformation

pr(u@) = U pr@ U, VgeGandVi

M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner, NPB (2014)

class inverting, physical CP

involuto . :
ry transformations CF trans
automorphisms formations

44



Summary

 For discrete groups that do not have class-inverting, involutory automorphism, CP is
generically broken by complex CG coefficients (Type | Group)

- Non-existence of such automorphism & physical CP violation

CP Violation from Group Theory!

Discrete (flavor)

symmetry G
M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz,

l A.Trautner, NPB (2014)

Type Il: one can
impose a physical
CP transformation

' Type | groups Gi:

Type Il A groups Gy a: Type Il B groups Gy g:

generic settings based on
Gy donot allow for a
& . Physical CP transformation,

§ thereis a CP basis in there is no basis in which
which all CG’s are real all CG’s are real
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Example for a type | group:

A(27)

e decay asymmetry in a toy model
e prediction of CP violating phase from group theory
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Toy Model based on A(27)

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Field content @

field S X Y[ ¢ | 3
A2T) 1, 1, 1; | 3 3
U1) | gv—9s | qv—qz | 0 | g¢ | gs

* Interactions (qv-g:#0

O%;Oy = FY S?izj*‘ q\lf X?izj*' H\l‘I], Y?i‘{’j+ HLZJ Y§i2j+h.c.

4 0 10 A
(F = /'l 1 0 0\ )
G=g]| 0 0 1
A1 00 Hyys = hys | 0 o® O
........................... 0 0 w
.................................................................................... R S )
“flavor” structures determined by arbitrary coupling constants:

(complex) CG coefficients f, g, hy, hs
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Toy Model based on A(27)

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Particle decay Y — PV

interference of

S/

with
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Decay Asymmetry

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Decay asymmetry
eywy = | Im[Is] Im [hyhi] +|gl* Im[Ix] Im [why hs]

- cancellation requires delicate adjustment of relative phase ¢ := arg(hy A3)
- for non-degenerate Msand Mx: Im [Is} + Im [Ix}

* phase ¢ unstable under quantum corrections
- for Im|[Ig] = Im [Ix] & If] = lg]

* phase ¢ stable under quantum corrections

- relations cannot be ensured by outer automorphism of A(27)

* require symmetry larger than A(27)
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Decay Asymmetry

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Decay asymmetry

(Y -00) -T(Y* — 00)
Y - T0) +T(Y* — T0)

r
Y 5Tw =
r

o Tm[Ig) Im [tr (F* Hy FHE) | + 1 1] T [t (GT Hy G HE )|
= |f* Tm[Is] Tm [hg h3;] + [g|* Tm [Ix] Tm [w hy hs;)

@ne—loop integral [y = [(Ms,My)) one-loop integral  Ix = I(Mx, My))

* properties of €
* invariant under rephasing of fields
* independent of phases of f and g

* basis independent
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CP Conservation vs Symmetry Enhancement

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)
= replace S ~ 15 by Z ~ 1g ~ interaction

L =g {le ® (?E)IJIO +h.c. = (G ZV¥% +h.c.

and leads to new interference diagram

F
é

S

Ft
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CP Conservation vs Symmetry Enhancement

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

= replace S ~ 1o by Z ~ 1g ~ interaction

LE =g {Zl8 ® (WZ)IJIO +hc. = (G ZV¥% +hec.

toy
= different contribution to decay asymmetry: ai_)w — gqu
() Mz =DMx
= total CP asymmetry of the Y decay vanishes if ¢ (i) [g] = |g’|
(i) « =0

iz relations (i)—(iii) can be due to an outer automorphism

XS 7z, vSyY, ‘P_}\ U, ° & ZﬂUu/S\‘PC

1 0 O
requires gz = —qy U, = [0 o 0
. BUT this enlarges A(27) — SG(54,5) ~ A(27) x Zy® 0 0 2

SG(54,5): group name from GAP library
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Spontaneous CP Violation with Calculable CP Phase

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

field X |Y| Z | ¢ ) ¢
AT | 1; | 15| 13 3 3 1o
U1) | 29v | 0 | 299 | qw | —qw || O

(X,Z) : doublet
A(27) c SG(54,5): ¢ (¥,=% : hexaplet
) :  non-trivial 1—dim. representation

1= non-trivial (¢) breaks SG(54,5) — A(27)

== allowed coupling leads to mass splitting %5, > M?* (X +1Z1%) + [% (@) (IXP? -1Z) + h.c.]

= CP asymmetry with calculable phases [ CG coefficient of SG(54,5) )

ey iy byl Im [ 0] (Im [Ix] ~Im I;])  prcmmeememeemmeeommmeemmsenmsmmeemeey
1 Group theoretical origin |

_Of P violation:

M.-C.C., K.T. Mahanthappa (2009)

[ phase predicted by group theory j
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Some Outer Automorphisms of A(27)

up : lieoly, 146015, 17013, 3-5U,, 3
ug : lieoly, 191,156 1,3->U,, 3"
us : 1o lg, lgeoly, 15617,,3-5U0,,3
ug : lioly;, 19 15,156 1, 3->U,, 3
us : 1,01, 3-U, 3

- sample outer automorphisms of A(27)

 twisted Frobenius-Schur indicators R 10 1, 1, 13 1, 1 14 1; 13 3 3
FS,® |1 1 1 0 0 0 0 0 0 1 1
FS,(R) | 1 0 0 1 0 0 1 0 0 1 A
FS,®| 1 0 0 0 0 1 0 1 0 1 1
FS, Ry | 1 0o o 1 0 0 1 0 0 1 {1
FS,® |1 1 1 1 1 1 1 1 1 0 0

* none of the u; maps all representations to their conjugates

* however, it is possible to impose CP in (nhon-generic) models, where only a subset
of representations are present, €.9. ) c {1,,15,17.3.3)

« CP conservation possible in non-generic models

+ e.9. some well-known multiple Higgs model  Branco, Gerard, and Grimus (1984)



CP-like Symmetries

1= outer automorphism wus

X 5X, Z->2Z,Y>Y, ¥ U,X & = U,¥

A\

0 0 w?
U, = 0O 1 O
w 0 0

1= does not lead to a vanishing decay
asymmetry

= in general, imposing an outer
automorphism as a symmetry does
not lead to physical CP
conservation!

w CP-like symmetry



