Solutions of MiniBooNE Anomaly using Dark Sector Models

Bhaskar Dutta

Texas A&M University

Rabi-Fest, University of Maryland, October, 2022

Process	Neutrino Mode	Antineutrino Mode
$\nu_{\mu} \& \bar{\nu}_{\mu}$ CCQE	107.6 ± 28.2	12.9 ± 4.3
NC π^0	732.3 ± 95.5	112.3 ± 11.5
NC $\Delta \rightarrow N\gamma$	251.9 ± 35.2	34.7 ± 5.4
External Events	109.8 ± 15.9	15.3 ± 2.8
Other ν_{μ} & $\bar{\nu}_{\mu}$	130.8 ± 33.4	22.3 ± 3.5
$\nu_e \& \bar{\nu}_e \text{ from } \mu^{\pm} \text{ Decay}$	621.1 ± 146.3	91.4 ± 27.6
$\nu_e \ \& \ \bar{\nu}_e$ from K^\pm Decay	280.7 ± 61.2	51.2 ± 11.0
$\nu_e \ \& \ \bar{\nu}_e$ from K^0_L Decay	79.6 ± 29.9	51.4 ± 18.0
Other ν_e & $\bar{\nu}_e$	8.8 ± 4.7	6.7 ± 6.0
Unconstrained Bkgd.	2322.6 ± 258.3	398.2 ± 49.7
Constrained Bkgd.	2309.4 ± 119.6	400.6 ± 28.5
Total Data	2870	478
Excess	560.6 ± 119.6	77.4 ± 28.5

Beam Excess

0

0.6

0.8

1.2

L/E, (meters/MeV)

1.4

 $\bar{\nu}_e$ signal was detected via The reaction $\bar{\nu}_e p \rightarrow e^+ n$ with e^+ energy between 36 and 60 MeV, followed by γ from $np \rightarrow d \gamma (2.2MeV)$

Nucl-ex/9504002

		$\mathbf{E}\mathbf{x}\mathbf{cess}$	РОТ	Charged Mesons Focused?
Target Mede	Neutrino Mode	560.6 ± 119.6	$1.875E{+}21$	π^+, K^+
Target Mode	Anti-neutrino Mode	77.4±28.5	$1.127E{+}21$	π^-, K^-
Dump Mode		None	$1.86E{+}20$	Isotropic

- When a proton beam hits a target, a lot of charged and neutral mesons are Produced about one pion/POT, 0.1 kaon/POT
- Almost all the charged pions, and kaons are horn focused on the direction of the detector (the neutral mesons fraction is smaller)

Solutions:

- All the solutions which are proposed are neutrino-based new physics
- Dark sector attempts to use π^0 decay are ruled out by the dump mode data $\pi^0 \rightarrow X + \gamma$ Jordan, Kahn, Moschell, Krnjaic, Spttz, Phys.Rev.Lett. 122 (2019) 8, 081801
- Can we use the charged pion decays for the dark sector based solution?

Neutrino-anti-neutrino mode excess difference can be accommodated

5-body decay is not helicity suppressed

Large flux of new particle flux can be expected: limited by the pion Br to e, μ + *v*+*missing* ~ 10⁻⁶

Magnetic focusing horn provides more charged pions compared to neutral pions: beam dump constraint does not apply anymore

Two dark sector scenarios:

• Short-lived mediators: Promptly decay to dark matter particles which then up scatter in the detector

 $\mathcal{L}_V \supset \sum_{i=1,2} \left(e\epsilon_i J_{\rm EM}^{\mu} + g_i J_D^{\mu} + g'_i J_D^{\prime \mu} \right) V_{i,\mu}$

• Long-lived mediators: get scattered at the detector producing photon via inverse Primakoff like scattering

Dutta, Kim, Thompson, Thornton, Van de Water, Phys.Rev.Lett. 129 (2022) 11, 111803

Vector portal dark matter						
Scenario	$(m_V$	$m_1, m_{V_2}, m_\chi, m_\chi$	$i_{\chi'})$	$\epsilon_1\epsilon_2 g_2'^2/(4\pi)$		
Single	(17	(, -, 8, 40) Me	γV	$3.6 imes 10^{-9}$		
Double	(17,	200, 8, 50) M	eV	1.3×10^{-7}		
	Long lived scalar/ pseudo-scalar					
Scenar	io	$(m_{Z'}, m_{\phi/a})$	$g_{\mu g}$	$g_n \lambda \; [{ m MeV}^{-1}]$		
Scala	r	(49,1) MeV		2.2×10^{-8}		
Pseudoso	alar	(85,1) MeV		5.9×10^{-7}		

Long-lived Vector couplings leptons-quarks

m_X [MeV]	m_{ϕ} [MeV]	${ ilde g}~[{ m MeV^{-1}}]$
5	650	$9 \cdot 10^{-8}$
10	550	$1.3 \cdot 10^{-8}$

Dutta, Kim, Thompson, Thornton, Van de Water, Phys.Rev.Lett. 129 (2022) 11, 111803

Many different model scenarios

Brymer, Depommier, Leroy, PHYSICS REPORTS Physics Letters. No. 3 (1962) 151

Using the charged and neutral mesons, these light mediators can be investigated in other experiments, e.g., CHARM, T2K, MINERvA, CCM, COHERENT, SBND

- The excess is not constrained by CHARM-II, T2K, MINERvA: size of the detector, distance, pion production rate
 The photon, electron-positron production rate remains constant or decreases
 depending the mediator type as the beam energy increases
- Prediction for MicroBooNE: 20 events (channels: 1 gamma+0 proton, e⁺e⁻+ 0p)
- LSND: neutron ejection from the inverse Primakoff scattering can occur and 2.2 MeV γ can appear from neutron capture. The dark matter scenario does not work since the proton beam energy is 800 MeV
- SBND, ICARUS, DUNE, FASER can investigate these scenarios

Predictions for other v experiments

MiniBooNE Anomaly and models

Model	U. Signature	LSND	MB	Reactors	Cosmology	Issues	Score
3+1	Oscillations					Appearance-disappearance tension.	6
(3+1) + inv-v decay	Damped oscillations					Large couplings. UV model?	4
(3+1) + NSI	Modified matter effects					Large NSI couplings. DeepCore tension.	11
Anomalous matter	Resonant appearance				unknown	Tension with T2K if resonance in E.	9
Large extra dim	Osc with related freqs.				unknown	Same issues as 3+1 or worse.	12
LNV in µ decays	$\mu^+ \rightarrow \text{anti-} v_e$					Michel params in tension w/ TRIUMF.	8
Lorentz violation	Sidereal time variation				unknown	HE IceCube tension.	10
Dark neutrinos	Upscattering to N \rightarrow v e^+e^-					MINERvA/CHARM-II/ND280 tension?	2
Dipole portal	Upscattering to N \rightarrow v y					MINERvA/CHARM-II/ND280 tension?	3
(3+1) + vis-v decay	$DIFofv_{s}^{}\to v_{e}^{}$					Tension with solar antineutrinos.	5
(3+1) + vis decay	$DIFofN\tovv$					Timing at MB.	7
Dark secto rs: dark matter	Upscattering to $\chi' \rightarrow \chi e^+e^-$					MINERvA/CHARM-II/ND280 tension?	5
Dark sectors: (pseudo)-scalar	Forward scattering to y					MINERvA/CHARM-II/ND280 tension?	1

SBN Workshop, 2021

MiniBooNE Anomaly and models

• New Physics: Dark matter, neutrino masses and mixing, g-2 of muon, LHCb, MiniBooNE etc.

Are they all correlated? Is there a model?

- The explanations for g-2 of the muon, LHCb, MiniBooNE can be done using a model, for example, with quark and muon couplings
- The model will involve light mediators
- Requirements: light vector mediator, scalar/pseudo-scalar mediator, inelastic DM

Required

$SU(2)_L \times U(1)_Y \times U(1)_{T3R}$

Model with a sub GeV DM and Light mediators

E.g., there may be a new symmetry breaking scale around GeV $\rightarrow 2^{nd}$ and 1^{st} generation fermion masses ($\sim MeV$ to few GeV)

Anomaly free

field	q_{T3R}
q_R^u	-2
q_R^d	2
ℓ_R	2
ν_R	-2
η_L	1
η_R	-1
ϕ	-2

Dutta, Ghosh, Kumar, Phys.Rev.D 100 (2019) 075028 $SU(2)_L \times U(1)_Y \times U(1)_{T3R}$

 $U(1)_{T3R}$ is broken at 1-10 GeV down to Z_2

→Low mass dark matter, gauge and scalar mediators

Predictions are testable at various low energy experiments

Dark matter is made out of η_1 , η_2 .

$$\eta_1 = -\frac{i}{\sqrt{2}} \begin{pmatrix} \eta_L - \eta_R^e \\ -\eta_L^e + \eta_R \end{pmatrix} \qquad \qquad \eta_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \eta_L + \eta_R^e \\ \eta_L^e + \eta_R \end{pmatrix}$$

Dark Matter (parity odd): $\eta_{1,2}$ and can be inelastic with small mass gap among η_1 , η_2

U(1)_{T3R}

In SM, the Yukawa couplings are hierarchical:

$$\lambda_t^{(SM)} \sim 1, \, \lambda_c^{-(SM)} \sim 10^{-2}, \, \lambda_{s,\mu}^{-(SM)} \sim 10^{-3}, \, \lambda_{u,d}^{-(SM)} \sim 10^{-5}, \, \lambda_e^{-(SM)} \sim 10^{-6}$$

$$\mathcal{L}_{Yuk} = -\frac{\lambda_u}{\Lambda} \tilde{H} \phi^* \bar{Q}_L q_R^u - \frac{\lambda_d}{\Lambda} H \phi \bar{Q}_L q_R^d - \frac{\lambda_\nu}{\Lambda} \tilde{H} \phi^* \bar{L}_L \nu_R - \frac{\lambda_l}{\Lambda} H \phi \bar{L}_L \ell_R \\ -\lambda \phi \bar{\eta}_R \eta_L - \frac{1}{2} \lambda_L \phi \bar{\eta}_L^c \eta_L - \frac{1}{2} \lambda_R \phi^* \bar{\eta}_R^c \eta_R - \mu_\phi^2 \phi^* \phi - \lambda_\phi (\phi^* \phi)^2 + H.c.,$$

- Scalar ϕ vev $V = (-\mu_{\phi}^2/2\lambda_{\phi})^{1/2}$ breaks U(1)_{T3R} to Z₂,
- vev is around 1-10 GeV

→ We can have $\lambda_x \sim 0.1 - 1$ since (<H> < ϕ >) / Λ helps to fit the fermion masses

U(1)_{T3R}

- New scalar and gauge boson: ϕ' , A' are light in this model
 - The couplings of ϕ' , A' with quarks and leptons are fixed once we choose the vev of $\langle \phi \rangle$ and the A' mass

$$\mathcal{L}_{Yuk} = -m_u \bar{q}_L^u q_R^u - m_d \bar{q}_L^d q_R^d - m_\nu \bar{\nu}_L \nu_R - m_\ell \bar{\ell}_L \ell_R - \frac{1}{2} m_1 \bar{\eta}_1 \eta_1 - \frac{1}{2} m_2 \bar{\eta}_2 \eta_2$$

$$\left(-\frac{m_u}{V} \bar{q}_L^u q_R^u \phi' - \frac{m_d}{V} \bar{q}_L^d q_R^d \phi' - \frac{m_{\nu D}}{V} \bar{\nu}_L \nu_R \phi' - \frac{m_\ell}{V} \bar{\ell}_L \ell_R \phi' - \frac{1}{2} \frac{m_1}{V} \bar{\eta}_1 \eta_1 \phi' - \frac{1}{2} \frac{m_2}{V} \bar{\eta}_2 \eta_2 \phi' + \dots \right)$$

A' also mixes with photon and Z

$$Z, \gamma m f_R M'_{\mu}$$

DM Abundance in U(1)T3R

Thermal relic is easier to satisfy due to the existence of two mediators

Resonance/non-resonance:

$m_{A'}$ (MeV)	$m_{\phi'}$ (MeV)	$m_{\eta} \; ({\rm MeV})$	$m_{\nu_s}(\text{MeV})$	$m_{\nu D}({ m MeV})$	$\langle \sigma v \rangle ~({\rm cm}^3/{\rm sec})$	$\sigma_{\rm SI}^{scalar}({\rm pb})$	$\sigma_{\rm SI}^{vector}({\rm pb})$
150 180	80 76	$\frac{40}{38}$	10 10	10^{-3} 10^{-3}	3×10^{-26} 3×10^{-26}	$0.58 \\ 0.58$	$\begin{array}{c} 1.17\\ 1.06\end{array}$

Parameter Space

Various scenarios: Gauge boson (A')-scalar (ϕ') mediators parameter space

• E.g., Muon model: u_R , d_R , v_R , μ_R

- Electron model: u_R , d_R , v_R , e_R
 - Similarly, models with second generation quarks

g-2 of muon, $R_{k(*)}$ anomaly

• Fixes $M_{\phi'}=70-100 \text{ MeV for } M_{A'}\sim 5-200 \text{MeV}$

$$R_K = \frac{\mathcal{B}(B \to K\mu^+\mu^-)}{\mathcal{B}(B \to Ke^+e^-)}, \ R_{K^\star} = \frac{\mathcal{B}(B \to K^*\mu^+\mu^-)}{\mathcal{B}(B \to K^*e^+e^-)}.$$

 \mathscr{R}_{K^+} with 100% of Run 1+2 $\mathscr{R}_{K^+}^{[1.1,6]} = 0.846^{+0.042+0.013}_{-0.039-0.012}$ 3.1σ below SM Nature Phys. 18, 3 (2022)

$$\mathcal{R}_{K^{*0}}^{[0.045,1.1]} = 0.66^{+0.11}_{-0.07} \pm 0.03$$

2.1 σ below SM JHEP 08.055 (2017)
$$\mathcal{R}_{K^{*0}}^{[1.1,6]} = 0.69^{+0.11}_{-0.07} \pm 0.05$$

2.4 σ below SM

UV completion and R_k anomaly

Origin of
$$\frac{\lambda_d}{\Lambda} H \phi \bar{Q}_L q_R^d = \frac{m_f}{\sqrt{2}V} \bar{f} f \phi$$
 V

 $-\mathcal{L}_Y \supset \lambda_{Ld} \bar{q}'_L \chi'_{dR} H + \lambda_{Rd} \bar{\chi}'_{dL} d'_R \phi + m_{\chi_d} \bar{\chi}'_{dL} \chi'_{dR}$

$$\mathbf{m}_{\chi'_{\mathbf{f}}}$$
 is heavy $\rightarrow m_{\mathbf{f}} = \frac{\lambda_{Lf}\lambda_{Rf}vV}{\sqrt{2}m_{\chi'_{\mathbf{f}}}}$

V: vev of ϕ

Z. Berezhiani, PLB 129, 99 (1983);
D. Chang and R. N. Mohapatra, PRL. 58, 1600 (1987). A. Davidson and K. C. Wali, PRL 59, 393(1987), A. De Pace,
H. Muther, and A. Faessler,
PLB 188, 307 (1987); S. Rajpoot,
MPLA 2, 307 (1987),
K. S. Babu and R. N. Mohapatra, PRL 62, 1079 (1989; PRD 41,1286 (1990).

$$M_{f} = \begin{pmatrix} 0 & \frac{\lambda_{Lf}v}{\sqrt{2}} \\ \lambda_{Rf}V & m_{\chi'_{f}} \end{pmatrix} \cdot \begin{pmatrix} f_{L,R} \\ \chi_{f_{L,R}} \end{pmatrix} = \begin{pmatrix} \cos\theta_{f_{L,R}} & \sin\theta_{f_{L,R}} \\ -\sin\theta_{f_{L,R}} & \cos\theta_{f_{L,R}} \end{pmatrix} \begin{pmatrix} f'_{L,R} \\ \chi_{f'_{L,R}} \end{pmatrix}$$

Now we use these new fields to calculate **b**—> s *l*+*l*⁻ :

- Lepton non-universality is obtained from the A' and ϕ couplings
- Quark flavor violation is obtained from the UV completion: $\overline{b} \gamma^{\mu} P_{L,R} s(Z^{\mu}, A'^{\mu})$,

UV completion and R_k anomaly

Fit to R_k anomaly and predictions

Fits:

	BMA	BMB	BMC	BMD
C_{10}^U	4.85	-5.86	2.7	-5.67
$C_{9,10}^{NU}$	-0.30	3.65	-0.8	4.55
$ C_s - C'_s \text{GeV}^{-1}$	0.033	0.024	0.011	-
$\left C_p - C'_p\right \mathrm{GeV}^{-1}$	-	0.030	0.043	-
$C_{9,10}^{'NU}$	-	-	-	-1.28
R_K	0.82	0.87	0.86	0.87
$R_{K}^{*}[1.1, 6]$	0.83	0.78	0.97	0.89
$Br(B_s \to \mu^+ \mu^-)$	3.36×10^{-9}	3.05×10^{-9}	2.67×10^{-9}	3.34×10^{-9}
SM pull	4.4σ	4.6σ	3.8σ	4.2σ

Predictions:

Observable	Measured Value	SM	BMA	BMB	BMC	BMD
$Br(B^+ \to K^{*+}\mu^+\mu^-)(10^{-8})[15.0, 19.0]$	$15.8^{+3.2}_{-2.9} \pm 1.1$ [113]	26.8 ± 3.6	7.80	82.9	10.4	92.4
$Br(B^0 \to K^0 \mu^+ \mu^-) \ (10^{-8})[15.0, 22.0]$	$6.7 \pm 1.1 \pm 0.4$ [113]	9.8 ± 1.0	3.31	30.4	4.15	29.4
$Br(B^+ \to K^+ \mu^+ \mu^-)(10^{-8})$ [15.0,22.0]	$8.5 \pm 0.3 \pm 0.4$ [113]	10.7 ± 1.2	3.59	33.0	4.5	32.0
$\frac{dB(B_S \to \phi \mu^+ \mu^-)}{dq^2}$ (10 ⁻⁸ GeV ⁻²)[1.0,6.0]	$2.57^{+0.33}_{-0.31}\pm 0.08\pm 0.19~[114]$	4.81 ± 0.56	1.60	16.8	2.28	18.7
$\frac{dB(\Lambda_b^0 \to \Lambda \mu^+ \mu^-)}{dq^2} (10^{-7} \text{ GeV}^{-2}) [15,20]$	$1.18^{+0.09}_{-0.08}\pm 0.03\pm 0.27~[115]$	0.71 ± 0.08	2.19	2.28	0.29	2.48

UV completion and R_k anomaly

• The model fits R_K and R_{K^*} and $B_s \rightarrow \mu^+ \mu^-$

For
$$M_{\phi'} = 70-100 \text{ MeV} \text{ for } M_{A'} \sim 5-200 \text{ MeV}$$

Dutta, Ghosh, Huang, Kumar, Phys.Rev.D 105 (2022) 1, 015011

• The light scalar and vector of this model can be explored at the neutrino experiments and can explain the MB anomaly using DM, light mediators

Explanation of the anoamly

For
$$M_{\phi'} = 70-100 \text{ MeV} \text{ for } M_{A'} \sim 5-200 \text{ MeV}$$

- Fits R_K and R_{K^*} and $B_s \rightarrow \mu^+ \mu^-$
- Fits MiniBooNE anomaly
- Couplings (e.g., $V \overline{q}q$): ~ 10⁻⁴: Fixed by the masses and the vev in this model
- Many other models can also fit, e.g., B-xL type

(For vector particles: quark coupling dominates)

Outlook

- MiniBooNE anomaly can be explained using dark sector models using light mediators: utilize charge meson decays and horn focusing
- The solution can be obtained by short and long lived-mediators: Short-lived mediators: Inelastic dark matter Long-lived mediator: Inverse Primakoff
- Many model possibilities
- Light mediator models can explain various anomalies and puzzles
- SBND, ICARUS, DUNE, FASER, CCM, COHERENT, JSNS2 can check this scenario

Thank You Rabi for your Mentorship and Collaboration