Solutions of MiniBooNE Anomaly using Dark Sector Models

Bhaskar Dutta

Texas A&M University

Rabi-Fest, University of Maryland, October, 2022

LSND

3.8 σ *excess*

̅ *signal was detected via The reaction* $\bar{v}_e p \rightarrow e^+ n$ *with e+ energy between 36 and 60 MeV, followed by γfrom np* \rightarrow *d* γ (2.2MeV)

Nucl-ex/9504002

4.8 ^σ *excess: electron-like event*

- *When a proton beam hits a target, a lot of charged and neutral mesons are Produced about one pion/POT, 0.1 kaon/POT*
- *Almost all the charged pions, and kaons are horn focused on the direction of the detector (the neutral mesons fraction is smaller)*

Solutions:

- *All the solutions which are proposed are neutrino-based new physics*
- *Dark sector attempts to use* π^0 *decay are ruled out by the dump mode data* $\pi^0 \to X + \gamma$ *Jordan, Kahn, Moschell, Krnjaic, Spttz, Phys.Rev.Lett.* 122 (2019) 8, 081801
- *Can we use the charged pion decays for the dark sector based solution?*

Neutrino-anti-neutrino mode excess difference can be accommodated

 \cdot

3-body decay is not helicity suppressed

Large flux of new particle flux can be expected: limited by the pion Br to e, μ *+* ν *+missing ~ 10⁻⁶*

Magnetic focusing horn provides more charged pions compared to neutral pions: beam dump constraint does not apply anymore

Two dark sector scenarios:

• *Short-lived mediators: Promptly decay to dark matter particles which then up scatter in the detector*

 $\mathcal{L}_V \supset \sum_{i=1,2} \left(e \epsilon_i J_{\text{EM}}^\mu + g_i J_D^\mu + g'_i J_D^{\prime \mu} \right) V_{i,\mu}$

• *Long-lived mediators: get scattered at the detector producing photon via inverse Primakoff like scattering*

Dutta, Kim,Thompson,Thornton,Van de Water, Phys.Rev.Lett. 129 (2022) 11, 111803

Long-lived Vector couplings leptons-quarks

Dutta, Kim,Thompson,Thornton,Van de Water, Phys.Rev.Lett. 129 (2022) 11, 111803

Many different model scenarios

Brymer, Depommier, Leroy, PHYSICS REPORTS Physics Letters. No. 3 (1962) 151

Using the charged and neutral mesons, these light mediators can be investigated in other experiments, e.g., CHARM, T2K, MINERvA, CCM, COHERENT, SBND

- The excess is not constrained by CHARM-II, T2K, MINERvA: size of the detector, distance, pion production rate The photon, electron-positron production rate remains constant or decreases depending the mediator type as the beam energy increases
- Prediction for MicroBooNE: 20 events (channels: 1 gamma+0 proton, e^+e^-+ 0p)
- LSND: neutron ejection from the inverse Primakoff scattering can occur and 2.2 MeV γ can appear from neutron capture. The dark matter scenario does not work since the proton beam energy is 800 MeV
- SBND, ICARUS, DUNE, FASER can investigate these scenarios

Predictions for other ν **experiments**

MiniBooNE Anomaly and models

SBN Workshop, 2021

MiniBooNE Anomaly and models

• New Physics: Dark matter, neutrino masses and mixing, g-2 of muon, LHCb, MiniBooNE etc.

Are they all correlated? Is there a model?

- The explanations for g-2 of the muon, LHCb, MiniBooNE can be done using a model, for example, with quark and muon couplings
- The model will involve light mediators
- Requirements: (light vector mediator, scalar/pseudo-scalar mediator, inelastic DM

Required

$SU(2)_{L} \times U(1)_{Y} \times U(1)_{T3R}$

Model with a sub GeV DM and Light mediators

E.g., there may be a new symmetry breaking scale around GeV 2nd and 1st generation fermion masses (~MeV to few GeV)

Anomaly free

Dutta, Ghosh, Kumar, Phys.Rev.D 100 (2019) 075028 $SU(2)_L \times U(1)_Y \times U(1)_{T3R}$

 $U(1)_{T3R}$ *is broken at 1-10 GeV down to* Z_2

Low mass dark matter, gauge and scalar mediators

Predictions are testable at various low energy experiments

Dark matter is made out of η_1 , η_2 .

$$
\eta_1 = -\frac{i}{\sqrt{2}} \begin{pmatrix} \eta_L - \eta_R^c \\ -\eta_L^c + \eta_R \end{pmatrix} \qquad \qquad \eta_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \eta_L + \eta_R^c \\ \eta_L^c + \eta_R \end{pmatrix}
$$

Dark Matter (parity odd): $\eta_{1,2}$ *and can be inelastic with small mass gap among* η_1 , η_2

$\mathbf{U(1)}_{\text{T3R}}$

In SM, the Yukawa couplings are hierarchical:

$$
\lambda_t^{\rm (SM)} \sim \! 1, \, \lambda_c^{\rm \, (SM)} \sim \! 10^{-2}, \, \lambda_{s,\mu}^{\rm \, (SM)} \sim 10^{-3} \, , \, \lambda_{u,d}^{\rm \, (SM)} \sim 10^{-5} \, , \, \lambda_e^{\rm \, (SM)} \sim 10^{-6}
$$

$$
\mathcal{L}_{Yuk} = -\frac{\lambda_u}{\Lambda} \tilde{H} \phi^* \overline{Q}_L q_R^u - \frac{\lambda_d}{\Lambda} H \phi \overline{Q}_L q_R^d - \frac{\lambda_\nu}{\Lambda} \tilde{H} \phi^* \overline{L}_L \nu_R - \frac{\lambda_l}{\Lambda} H \phi \overline{L}_L \ell_R \n- \lambda \phi \overline{\eta}_R \eta_L - \frac{1}{2} \lambda_L \phi \overline{\eta}_L^c \eta_L - \frac{1}{2} \lambda_R \phi^* \overline{\eta}_R^c \eta_R - \mu_\phi^2 \phi^* \phi - \lambda_\phi (\phi^* \phi)^2 + H.c.,
$$

- **Scalar** ϕ **vev** $V = (-\mu^2/\mu^2 \lambda_0)^{1/2}$ **breaks** $U(1)_{T3R}$ to Z_2 ,
- **vev is around 1-10 GeV**

 \rightarrow We can have λ_{x} ~ 0.1 – 1 since (<H> < ϕ >) / Λ helps to fit the fermion masses

$U(1)_{\text{T3R}}$

- **New scalar and gauge boson: ϕ' , A' are light in this model**
	- **The couplings of** ϕ' , A' with quarks and leptons **are fixed once we choose the vev of <**ϕ> and the A' mass

$$
\mathcal{L}_{Yuk} = -m_u \bar{q}_L^u q_R^u - m_d \bar{q}_L^d q_R^d - m_\nu \bar{\nu}_L \nu_R - m_\ell \bar{\ell}_L \ell_R - \frac{1}{2} m_1 \bar{\eta}_1 \eta_1 - \frac{1}{2} m_2 \bar{\eta}_2 \eta_2
$$

$$
\left(-\frac{m_u}{V} \bar{q}_L^u q_R^u \phi' - \frac{m_d}{V} \bar{q}_L^d q_R^d \phi' - \frac{m_\nu D}{V} \bar{\nu}_L \nu_R \phi' \left(\frac{m_\ell}{V} \bar{\ell}_L \ell_R \phi' - \frac{1}{2} \frac{m_1}{V} \bar{\eta}_1 \eta_1 \phi' - \frac{1}{2} \frac{m_2}{V} \bar{\eta}_2 \eta_2 \phi' + \dots \right) \right)
$$

A' also mixes with photon and Z

$$
Z, \gamma \text{ and } f_R \text{ from } A'_\mu
$$

DM Abundance in U(1)T3R

Thermal relic is easier to satisfy due to the existence of two mediators

Resonance/non-resonance:

Parameter Space

Various scenarios: Gauge boson (′ **)-scalar (**′ **) mediators parameter space**

• *E.g., Muon model:* u_R , d_R , v_R , μ_R

- *Electron model:* u_R , d_R , v_R , e_R
	- *Similarly, models with second generation quarks*

g-2 of muon, R_{k(*)} anomaly

Fixes $M_{\phi'}$ *=70-100 MeV for* $M_{A'}$ *~5-200MeV*

$$
R_K = \frac{\mathcal{B}(B \to K\mu^+\mu^-)}{\mathcal{B}(B \to Ke^+e^-)}, \ R_{K^*} = \frac{\mathcal{B}(B \to K^*\mu^+\mu^-)}{\mathcal{B}(B \to K^*e^+e^-)}.
$$

$$
\mathcal{R}_{K^{*0}}^{[0.045,1.1]} = 0.66^{+0.11}_{-0.07} \pm 0.03
$$

2.1 σ below SM

$$
\mathcal{R}_{K^{*0}}^{[1.1,6]} = 0.69^{+0.11}_{-0.07} \pm 0.05
$$

2.4 σ below SM

UV completion and R_k anomaly

Origin of
$$
\frac{\lambda_d}{\Lambda} H \phi \bar{Q}_L q_R^d = \frac{m_f}{\sqrt{2}V} \bar{f} f \phi
$$

 $-\mathcal{L}_Y \supset \lambda_{Ld}\bar{q}'_L\chi'_{dR}H + \lambda_{Rd}\bar{\chi}'_{dL}d'_R\phi + m_{\chi_d}\bar{\chi}'_{dL}\chi'_{dR}$

$$
\mathbf{m}_{\mathbf{x}_{\mathbf{f}}'} \text{ is heavy } \quad \Rightarrow \quad m_f = \frac{\lambda_{Lf} \lambda_{Rf} vV}{\sqrt{2} m_{\chi'_f}}
$$

V: vev of φ

Z. Berezhiani, PLB 129, 99 (1983); D. Chang and R. N. Mohapatra, PRL. 58, 1600 (1987). A. Davidson and K. C. Wali, PRL 59, 393(1987) , A. De Pace, H. Muther, and A. Faessler, PLB 188, 307 (1987); S. Rajpoot, MPLA 2, 307 (1987), K. S. Babu and R. N. Mohapatra, PRL 62, 1079 (1989; PRD 41,1286 (1990).

$$
M_f = \begin{pmatrix} 0 & \frac{\lambda_{Lf}v}{\sqrt{2}} \\ \lambda_{Rf}V & m_{\chi'_f} \end{pmatrix} \cdot \begin{pmatrix} f_{L,R} \\ \chi_{f_{L,R}} \end{pmatrix} = \begin{pmatrix} \cos \theta_{f_{L,R}} & \sin \theta_{f_{L,R}} \\ -\sin \theta_{f_{L,R}} & \cos \theta_{f_{L,R}} \end{pmatrix} \begin{pmatrix} f'_{L,R} \\ \chi_{f'_{L,R}} \end{pmatrix}
$$

\n**Now we use these new fields to calculate b—>s l⁺l⁻:**

Lepton non-universality is obtained from the A' and ϕ couplings

• Quark flavor violation is obtained from the UV completion: $b \gamma^{\mu} P_{L,R} s(Z^{\mu}, A'^{\mu}),$

UV completion and R_k anomaly

Fit to R_k anomaly and predictions

Fits:

Predictions:

UV completion and R_k anomaly

• *The model fits* R_K and R_{K^*} and $B_s \to \mu^+ \mu^-$

For
$$
M_{\phi'} = 70-100 \text{ MeV}
$$
 for $M_{A'} \sim 5-200 \text{ MeV}$

Dutta, Ghosh, Huang, Kumar, Phys.Rev.D 105 (2022) 1, 015011

The light scalar and vector of this model can be explored at the neutrino experiments and can explain the MB anomaly using DM, light mediators

Explanation of the anoamly

For M_{ϕ} =70-100 MeV for M_{A} ~5-200MeV

- *Fits* R_K and R_{K^*} and $B_S \rightarrow \mu^+ \mu^-$
- *Fits MiniBooNE anomaly*
- *Couplings (e.g.,* $V \overline{q}q$ *) : ~10⁻⁴: Fixed by the masses and the vev in this model*
- *Many other models can also fit, e.g., B-xL type*

(For vector particles: quark coupling dominates)

Outlook

- MiniBooNE anomaly can be explained using dark sector models using light mediators: utilize charge meson decays and horn focusing
- The solution can be obtained by short and long lived-mediators: Short-lived mediators: Inelastic dark matter Long-lived mediator: Inverse Primakoff
- Many model possibilities
- Light mediator models can explain various anomalies and puzzles
- SBND, ICARUS, DUNE, FASER, CCM, COHERENT, JSNS2 can check this scenario

Thank You Rabi for your Mentorship and Collaboration