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Naturalness Terminology

A dimensionless numbers (or dimensionful number in units of the cut-off) in the action
which is much less than one we will call this a
Dirac Fine Tuning

A Dirac fine tuning which is not radiatively stable we will call a t’"Hooft fine tuning.

Dirac fine tunings of relevant operators which are not protected by symmetry are t’'Hooft fine tuned

Some Examples:

Dirac t’'Hooft

Fermion masses in the SM, the Theta Higgs mass, CC
parameter



Resolutions to Naturalness
Problems

* Enhanced Symmetry (SUSY).

e Strong coupling dynamics shifts UV Solutions™

relevant to marginal. (RS)

* Relaxation Mechanisms. (PQ
mechanism (strong CP), Abbot IR Solutions”
(CC), Relaxion (EW Hierarchy)



Relaxation Mechanisms
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These paradigm are compelling (though they still suffer
from Dirac fine-tunings) especially since one need not
have any new physics beyond the weak scale (testability?)
But they dont seem very generic

However, perhaps the problem is that we are
thinking in to narrow a space of themes

Consider any A

: : Interactomic spacing
macroscopic object

R~ NA N ~ 10%?

To determine if this system his fine tuned we need to place it in
a theoretical context. Perhaps we can learn about field theories
which look finely tuned but are not.



Effective Field Theory of Solids

Label the atoms by D fields gbl (i, f) I=1—D

Lagrangian = Co-moving coordinates’

X! (¢, t) Eulerian
I\ I :
<¢ > = QX Ground state solution

Assumption: of homgeneity and isotropy on large scales

Broken spacte-time symmetries but leaves ! — 2! +al
unbroken diagonal sub-groups s o —

Is 1T ® 50(3)] X SO(S)ST — T1is7 & SO(S)T—|—ST



], — F( 8# ¢I 8“ ¢J ) Only three Goldstones

Inverse Higgs Constraints

Power Counting: 8¢ ~ 1 82¢ ~ 1
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Nothing terribly interesting from a Wilsonian point
of view, but there is something hidden here!



Consider a “Beam” (string) Embedded Solid

d/L < 1 .

L

|
Consider the action for the transverse mode: S = / d*x §¢2 + (1 (V2¢)2 T

Conspicuously absent is : (V)2

There is no symmetry to protect this term:
Apparent fine tuning



¢ (0' , 7') Labels atoms along the string

Jap — 6’QX“85XM

Action for embedded G — / d°oi\/gF ( g*Pa, $O30)

one D string:

Fix gauge expand around: ¢ — 0 + ¢(QZ, f)

X'=7 X°’°=0

1
S — /d7d05(8¢)2 =+ ... No fine tuning apparent



Need to impose boundedness of target space
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What does this imply for the Wilson Coefficients?
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We see that the vanishing of the Wilson coefficient Is a conequence of the
boundedness of the target space. This is a dynamical relaxation mechanism
though we have not had to do "“engineering”.

How can we generalize this mechanism?

-Space-time symmetry breaking

-Boundedness of Target Space

How can we choose our vanishing Wilson coefficients?



Consider a Superfluid

g / dzP(X) X = 0,601
¢ = ut + w(x) Analogy: *“time solid”
Bound target space O(F(p)) = 0(¢p — &)

Following the same line of reasoning as for the
solid we find

<TOV(Mt = ¢4)) = 0.



But we can do even better: We want to
see if we can make the CC vanish

Consider a Super-Solid
F(¢', ¢) =0(¢" — ¢)0(d — ¢o)

<T,ul/> =0



This seems to work in setting Wilson coefficients to zero,
but what about finite but small Wilson coefficients?

The theta function breaks the shift symmetry: No new terms must be included on
the boundary
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Thickness of surface
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Surface effects are suppressed by the ratio: | / R

R Extrinsic
curvature:

So including the effects of surface terms leads to a new relaxation condition

[
T ~ —A?
R



Perhaps no new physics at TeV is even "More Interesting”?



