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Rabi-fest 

(Work done in Collaboration with Alberto Nicolis)



• Hadronic Sum Rules and Regge Trajectories


• Canonical Quantization of Yang Mills Theory


• CP Violation


• Left Right Symmetric Models


• Finite Temperature Field Theories


• Baryon number violation/Proton Decay


• Neutrino mass models


• Neutron-Anti-Neutron Oscillations


• GUTS/SO(10)


• String Phenomenology


• Constraints from Astrophysics (neutron stars)


• Radiative Mass Generation


• Nucleosynthesis constraints


• Dark Matter (SIMPS/Mirror)


• Family Symmetries and Mass Hierarchies


• Super-Symmetric Phenomenology


• Lepto genesis

38 papers in 1986!



A dimensionless numbers (or dimensionful number in units of the cut-off ) in the action 

which  is much less than one  we will call this a


 Dirac Fine Tuning

  A Dirac fine tuning which is not radiatively stable we will call a t’Hooft fine tuning.

Naturalness Terminology 

Dirac fine tunings of relevant operators which are not protected by symmetry are t’Hooft fine tuned

Some Examples:

Dirac t’Hooft

Fermion masses in the SM, the Theta 
parameter

Higgs mass, CC



• Enhanced Symmetry (SUSY).


• Strong coupling dynamics shifts 
relevant to marginal.    (RS)      

Resolutions to Naturalness 
Problems

``UV Solutions’’

• Relaxation Mechanisms. (PQ 
mechanism (strong CP), Abbot 
(CC),  Relaxion (EW Hierarchy)      

``IR Solutions’’



Relaxation Mechanisms

<latexit sha1_base64="/uf3tWDSYFszrNuwPL5ePLNBQik=">AAAB/HicdVDJSgNBEO1xjXEbzVGRxiB4ChMJJh6EoBA8eEjALJCE0NOpSZr0LHT3KMMQb36HFw+KeJV8hze/wZ+wkyi4Pih4vFdFVT074Ewqy3o1Zmbn5hcWE0vJ5ZXVtXVzY7Mm/VBQqFKf+6JhEwmceVBVTHFoBAKIa3Oo24PTsV+/BCGZ712oKIC2S3oecxglSksdM3WOj3Er6DNcwq0r6PYAlzpm2spYR4V8Lod/k2zGmiBd3B5V3m52RuWO+dLq+jR0wVOUEymbWStQ7ZgIxSiHYbIVSggIHZAeNDX1iAuyHU+OH+I9rXSx4wtdnsIT9etETFwpI9fWnS5RffnTG4t/ec1QOYV2zLwgVODR6SIn5Fj5eJwE7jIBVPFIE0IF07di2ieCUKXzSuoQPj/F/5PaQSZ7mMlVdBonaIoE2kK7aB9lUR4V0RkqoyqiKEK36B49GNfGnfFoPE1bZ4yPmRT6BuP5HZwmlzM=</latexit>

L = �F ^ F
<latexit sha1_base64="ZWC+JSE3xJ2XePpJfpsokEiYQTU=">AAACBXicdVDLSgNBEJz1bXxFPephiAiKEHYlGL1FvXhUcBMhG8LspDcZMvtgpldZghcv/oAf4cWDIl79B2/5GyeJgs+ChqKqm+4uP5FCo233rbHxicmp6ZnZ3Nz8wuJSfnmlquNUcXB5LGN14TMNUkTgokAJF4kCFvoSan73eODXLkFpEUfnmCXQCFk7EoHgDI3UzK+7W85285B6SrQ7yJSKr6gHYYKZBmzmN+yifbBfLpXob+IU7SE2KgVv565fyU6b+TevFfM0hAi5ZFrXHTvBRo8pFFzCdc5LNSSMd1kb6oZGLATd6A2/uKabRmnRIFamIqRD9etEj4VaZ6FvOkOGHf3TG4h/efUUg/1GT0RJihDx0aIglRRjOoiEtoQCjjIzhHElzK2Ud5hiHE1wORPC56f0f1LdLTp7xdKZSeOIjDBD1kiBbBGHlEmFnJBT4hJObsg9eSRP1q31YD1bL6PWMetjZpV8g/X6Dirnm2o=</latexit>

U(1)A ! ;
<latexit sha1_base64="ZmXwJfNYtHBBEEaFPMlbZLstNrI=">AAACC3icdVDLSgNBEJyN7/ha9ehlSBAEIWwkmHgLevGoYEwgG8LspJMMmZ1dZ3oDIeTuxZvf4cWDIl79AW/+jZOH4LOgoaaqm+muIJbCoOe9O6m5+YXFpeWV9Ora+samu7V9ZaJEc6jwSEa6FjADUiiooEAJtVgDCwMJ1aB3OvarfdBGROoSBzE0QtZRoi04Qys13YwvmepIoH7cFdTXswdcJ6JPfewCsqab9XLecalYKNDfJJ/zJsiWM/7B3Xt5cN503/xWxJMQFHLJjKnnvRgbQ6ZRcAmjtJ8YiBnvsQ7ULVUsBNMYTm4Z0T2rtGg70rYU0on6dWLIQmMGYWA7Q4Zd89Mbi3959QTbpcZQqDhBUHz6UTuRFCM6Doa2hAaOcmAJ41rYXSnvMs042vjSNoTPS+n/5Oowlz/KFS5sGidkimWySzJkn+RJkZTJGTknFcLJDbknj+TJuXUenGfnZdqacmYzO+QbnNcPMleeLA==</latexit>
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These paradigm are compelling (though they still suffer 
from Dirac fine-tunings) especially since one need not 

have any new physics beyond the weak scale (testability?) 
But they dont seem very generic

However, perhaps the problem is that we are 
thinking in to narrow a space of themes

Consider any 
macroscopic object

<latexit sha1_base64="31W/G+fnTDj/hXjPK7qym4JZYYQ=">AAAB7nicdVC7SgNBFL3rM66vqKXNYBCslo0EEwsxaGNhEcE8IFnC7OxsMmR2dpmZFcKSj7CxUMTCxj+xtxH/xkmi4PPAhcM553IffsKZ0q77Zs3Mzs0vLOaW7OWV1bX1/MZmQ8WpJLROYh7Llo8V5UzQumaa01YiKY58Tpv+4HTsN6+oVCwWl3qYUC/CPcFCRrA2UrNzbqIB7uYLruMeVsqlEvpNio47QeH42T5KHl/tWjf/0glikkZUaMKxUu2im2gvw1IzwunI7qSKJpgMcI+2DRU4osrLJuuO0K5RAhTG0pTQaKJ+7chwpNQw8k0ywrqvfnpj8S+vneqw4mVMJKmmgkwHhSlHOkbj21HAJCWaDw3BRDKzKyJ9LDHR5kO2ecLnpeh/0th3igdO6cItVE9gihxsww7sQRHKUIUzqEEdCAzgGm7hzkqsG+veephGZ6yPni34BuvpHfkEkwM=</latexit>

⇤ Interactomic spacing

<latexit sha1_base64="lvIxmCMeo2JjzCKpJ/REgFCt2LM=">AAAB+XicdVDLSsNAFJ3UV42vqEs3g0VwFRIpti7EohsXIlXsA5pQJpNpO3QyCTOTQgn9Ezciirj1I9y7Ef/Gaavg88DA4Zx7uHdOkDAqleO8GbmZ2bn5hfyiubS8srpmrW/UZZwKTGo4ZrFoBkgSRjmpKaoYaSaCoChgpBH0T8Z+Y0CEpDG/UsOE+BHqctqhGCkttS3rEnqSRvAcemc6FaK2VXBs56BcKhbhb+LazgSFo2fzMLl9Natt68ULY5xGhCvMkJQt10mUnyGhKGZkZHqpJAnCfdQlLU05ioj0s8nlI7ijlRB2YqEfV3Cifk1kKJJyGAV6MkKqJ396Y/Evr5WqTtnPKE9SRTieLuqkDKoYjmuAIRUEKzbUBGFB9a0Q95BAWOmyTF3C50/h/6S+Z7v7dvHCKVSOwRR5sAW2wS5wQQlUwCmoghrAYACuwR24NzLjxngwHqejOeMjswm+wXh6B93RljM=</latexit>

R ⇠ N⇤
<latexit sha1_base64="NmudpAIwVZ4K5Hh8fCSeSN8J+/Q=">AAAB9XicdVDLSgMxFM3UVx1fVZdugkVwNczUYutCLLpxJRXsA9ppyaRpG5pkhiSjlKH/4caFD9z6Ge7diH9j2ir4PHDhcM693HtPEDGqtOu+WamZ2bn5hfSivbS8srqWWd+oqjCWmFRwyEJZD5AijApS0VQzUo8kQTxgpBYMTsZ+7ZJIRUNxoYcR8TnqCdqlGGkjtc5gU1EOPbeV5PZG7UzWddyDYiGfh7+J57gTZI+e7cPo/tUutzMvzU6IY06Exgwp1fDcSPsJkppiRkZ2M1YkQniAeqRhqECcKD+ZXD2CO0bpwG4oTQkNJ+rXiQRxpYY8MJ0c6b766Y3Fv7xGrLtFP6EiijUReLqoGzOoQziOAHaoJFizoSEIS2puhbiPJMLaBGWbED4/hf+Tas7x9p38uZstHYMp0mALbINd4IECKIFTUAYVgIEE1+AW3FlX1o31YD1OW1PWx8wm+Abr6R2hopT7</latexit>

N ⇠ 1023

To determine if this system his fine tuned we need to place it in 
a theoretical context. Perhaps we can learn about field theories 

which look finely tuned but are not.



Effective Field Theory of Solids

Label the atoms by D fields 
<latexit sha1_base64="utUbYKcAhqhIrRRpTIGJGdL9gSw=">AAAB+XicdVDLSsNAFJ3UV62vqEs3Q4tQUUoixdZd0Y3uKtgHNLFMppN26GQSZibFEPoXLt24UMStf+Kuf+O0VfB54MLhnHu59x4vYlQqy5oYmYXFpeWV7GpubX1jc8vc3mnKMBaYNHDIQtH2kCSMctJQVDHSjgRBgcdIyxueT/3WiAhJQ36tkoi4Aepz6lOMlJa6pulEA3pzWVRHzohgeHvQNQtWyTqtVspl+JvYJWuGQi3vHN5Nakm9a745vRDHAeEKMyRlx7Yi5aZIKIoZGeecWJII4SHqk46mHAVEuuns8jHc10oP+qHQxRWcqV8nUhRImQSe7gyQGsif3lT8y+vEyq+6KeVRrAjH80V+zKAK4TQG2KOCYMUSTRAWVN8K8QAJhJUOK6dD+PwU/k+axyX7pFS+0mmcgTmyYA/kQRHYoAJq4ALUQQNgMAL34BE8GanxYDwbL/PWjPExswu+wXh9B9ZgliY=</latexit>

�I(t, ~x) <latexit sha1_base64="RrW6exO0s5rk+xgp8pmLABK8Re8=">AAAB7HicdVDLSgNBEOz1mcRX1KOXwSB4MexKMPEgBPWgtwjmgckSZiezyZDZ2WVmVgxLvsGLB4N49eq/ePNrdJIo+CxoKKq66e7yIs6Utu1Xa2Z2bn5hMZXOLC2vrK5l1zdqKowloVUS8lA2PKwoZ4JWNdOcNiJJceBxWvf6J2O/fk2lYqG41IOIugHuCuYzgrWRqudHzt5pO5uz8/ZhqVgooN/EydsT5MrpaHT1fPNWaWdfWp2QxAEVmnCsVNOxI+0mWGpGOB1mWrGiESZ93KVNQwUOqHKTybFDtGOUDvJDaUpoNFG/TiQ4UGoQeKYzwLqnfnpj8S+vGWu/5CZMRLGmgkwX+TFHOkTjz1GHSUo0HxiCiWTmVkR6WGKiTT4ZE8Lnp+h/UtvPOwf5woVJ4ximSMEWbMMuOFCEMpxBBapAgMEt3MPIEtad9WA9TltnrI+ZTfgG6+kdNDeSCw==</latexit>

I = 1�D

Lagrangian ``Co-moving coordinates’’’

<latexit sha1_base64="vU3sX6ZKg5+o8IGmO09aKB/BVlc=">AAAB8nicdVDJSgNBEO2JW4xb1KOXJkGIKMOMBBNvQS96i2AWmImhp9OTNOlZ6K4RwpC/0IsHRbz6Nd7yN3YSBdcHBY/3qqiq58WCK7CsiZFZWFxaXsmu5tbWNza38ts7TRUlkrIGjUQk2x5RTPCQNYCDYO1YMhJ4grW84fnUb90yqXgUXsMoZp2A9EPuc0pAS0775rLkxgN+BAfdfNEyrdNqpVzGv4ltWjMUawX38G5SG9W7+Te3F9EkYCFQQZRybCuGTkokcCrYOOcmisWEDkmfOZqGJGCqk85OHuN9rfSwH0ldIeCZ+nUiJYFSo8DTnQGBgfrpTcW/PCcBv9pJeRgnwEI6X+QnAkOEp//jHpeMghhpQqjk+lZMB0QSCjqlnA7h81P8P2kem/aJWb7SaZyhObJoDxVQCdmogmroAtVRA1EUoXv0iJ4MMB6MZ+Nl3poxPmZ20TcYr+++VpPp</latexit>

XI(�, t) Eulerian

<latexit sha1_base64="0LxLM5Q8UiKsfLEzSo7TzH5ZCRc=">AAACDHicdVDLSgMxFM34rPVVdekmtAiCUKZSbF0IRTd2V8E+oNOWO2naCc1khiQjltIPcOPK/3DjQhG3foC7/o1pR8HngcDJOeeS3OOGnClt2xNrbn5hcWk5sZJcXVvf2ExtbddUEElCqyTggWy4oChnglY105w2QknBdzmtu4OzqV+/olKxQFzqYUhbPvQF6zEC2kidVMbhIPqcYif0WLuMHRlfT7ADPPQAX7fLJmVn7eNiIZ/Hv0kua8+QKaWdg7tJaVjppN6cbkAinwpNOCjVzNmhbo1AakY4HSedSNEQyAD6tGmoAJ+q1mi2zBjvGaWLe4E0R2g8U79OjMBXaui7JumD9tRPbyr+5TUj3Su2RkyEkaaCxA/1Io51gKfN4C6TlGg+NASIZOavmHgggWjTX9KU8Lkp/p/UDrO5o2z+wrRximIk0C5Ko32UQwVUQueogqqIoBt0jx7Rk3VrPVjP1kscnbM+ZnbQN1iv7684ncM=</latexit>

h�Ii = ↵xI Ground state solution

Broken spacte-time symmetries but leaves 
unbroken diagonal sub-groups

<latexit sha1_base64="sxEAZ11agNAKFbHOXKzbkv85tTU=">AAACAHicbVDLSgMxFM3UV62vURcu3ASLIAhlRoq6LLqxuwr2Ae203EkzbWhmMiQZtQzd+CtuXCji1s9w59+YPhbaeuDCyTn3knuPH3OmtON8W5ml5ZXVtex6bmNza3vH3t2rKZFIQqtEcCEbPijKWUSrmmlOG7GkEPqc1v3B9div31OpmIju9DCmXgi9iAWMgDZSxz54bJdbkvX6GqQUD9g8T6Fdxh077xScCfAicWckj2aodOyvVleQJKSRJhyUarpOrL0UpGaE01GulSgaAxlAjzYNjSCkyksnB4zwsVG6OBDSVKTxRP09kUKo1DD0TWcIuq/mvbH4n9dMdHDppSyKE00jMv0oSDjWAo/TwF0mKdF8aAgQycyumPRBAtEms5wJwZ0/eZHUzgrueaF4W8yXrmZxZNEhOkInyEUXqIRuUAVVEUEj9Ixe0Zv1ZL1Y79bHtDVjzWb20R9Ynz/fepXw</latexit>

xI ! xI + aI

Assumption: of homgeneity and isotropy on large scales

<latexit sha1_base64="dii/KMSYiODBSyKw3FZ/G1D3xBI=">AAACBnicbVDLSgMxFM3UV62vUZciBIvgxjIjRV0W3dhdBfuAzrRk0kwnNJMMSUYpQ1du/BU3LhRx6ze4829MHwttPXDhcM693HtPkDCqtON8W7ml5ZXVtfx6YWNza3vH3t1rKJFKTOpYMCFbAVKEUU7qmmpGWokkKA4YaQaD67HfvCdSUcHv9DAhfoz6nIYUI22krn3oJRHtVD1J+5FGUooHOFVOUacKu3bRKTkTwEXizkgRzFDr2l9eT+A0JlxjhpRqu06i/QxJTTEjo4KXKpIgPEB90jaUo5goP5u8MYLHRunBUEhTXMOJ+nsiQ7FSwzgwnTHSkZr3xuJ/XjvV4aWfUZ6kmnA8XRSmDGoBx5nAHpUEazY0BGFJza0QR0girE1yBROCO//yImmcldzzUvm2XKxczeLIgwNwBE6ACy5ABdyAGqgDDB7BM3gFb9aT9WK9Wx/T1pw1m9kHf2B9/gB1OZh4</latexit>

�I ! �I � aI

<latexit sha1_base64="2yOsEkjKVy/D+gHM5hpRZvRCuRA="></latexit>

TST ⌦ TI ⌦ SO(3)I ⌦ SO(3)ST ! TI+ST ⌦ SO(3)T+ST



<latexit sha1_base64="7wNk+SZQhVH2a7FHIMsnTmCFuLE=">AAACFnicbZDLSgMxFIYzXmu9jbp0EyxCXVhmpKgboSiIiosK9gKd6ZBJM21o5kKSEcrQp3Djq7hxoYhbcefbmGlH0dYfAj/fOSfJ+d2IUSEN41ObmZ2bX1jMLeWXV1bX1vWNzboIY45JDYcs5E0XCcJoQGqSSkaaESfIdxlpuP2ztN64I1zQMLiVg4jYPuoG1KMYSYUcff/6BJ4XrQhxSRFzLD+GVtSj7Uv4zdo/7GrP0QtGyRgJThszMwWQqeroH1YnxLFPAokZEqJlGpG0k/RmzMgwb8WCRAj3UZe0lA2QT4SdjNYawl1FOtALuTqBhCP6eyJBvhAD31WdPpI9MVlL4X+1Viy9YzuhQRRLEuDxQ17MoAxhmhHsUE6wZANlEOZU/RXiHuIIS5VkXoVgTq48beoHJfOwVL4pFyqnWRw5sA12QBGY4AhUwAWoghrA4B48gmfwoj1oT9qr9jZundGymS3wR9r7F5VBnmo=</latexit>

L = F (@µ�
I@µ�J)

Only three Goldstones

                                                  Inverse Higgs Constraints

Power Counting:    
<latexit sha1_base64="GWjObxV1bRaRRx/dMba/X92MTVM=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyyCqzIjRV0W3bisYB/QGUomzbShSSYkGaEOxV9x40IRt/6HO//GTDsLbT1w4XDOvcm9J5KMauN5305pZXVtfaO8Wdna3tndc/cP2jpJFSYtnLBEdSOkCaOCtAw1jHSlIohHjHSi8U3udx6I0jQR92YiScjRUNCYYmSs1HePAomUoYjBQI4oDDTl0O+7Va/mzQCXiV+QKijQ7LtfwSDBKSfCYIa07vmeNGGWv4wZmVaCVBOJ8BgNSc9SgTjRYTbbfgpPrTKAcaJsCQNn6u+JDHGtJzyynRyZkV70cvE/r5ea+CrMqJCpIQLPP4pTBk0C8yjggCqCDZtYgrCidleIR0ghbGxgFRuCv3jyMmmf1/yLWv2uXm1cF3GUwTE4AWfAB5egAW5BE7QABo/gGbyCN+fJeXHenY95a8kpZg7BHzifP3l7lJg=</latexit>

@� ⇠ 1
<latexit sha1_base64="o4Z4qHeGY2wFMn2bYvNhQy4NWFA=">AAACA3icbVDLSgMxFM3UV62vUXe6CRbBVZkpRV0W3bisYB/QGUsmzbShSSYkGaGUght/xY0LRdz6E+78GzPtLLT1wIXDOfcm955IMqqN5307hZXVtfWN4mZpa3tnd8/dP2jpJFWYNHHCEtWJkCaMCtI01DDSkYogHjHSjkbXmd9+IErTRNyZsSQhRwNBY4qRsVLPPQokUoYidl+FgRxSGGjKYcAY9Htu2at4M8Bl4uekDHI0eu5X0E9wyokwmCGtu74nTTjJ3seMTEtBqolEeIQGpGupQJzocDK7YQpPrdKHcaJsCQNn6u+JCeJaj3lkOzkyQ73oZeJ/Xjc18WU4oUKmhgg8/yhOGTQJzAKBfaoINmxsCcKK2l0hHiKFsLGxlWwI/uLJy6RVrfjnldptrVy/yuMogmNwAs6ADy5AHdyABmgCDB7BM3gFb86T8+K8Ox/z1oKTzxyCP3A+fwBlo5a4</latexit>

@2� ⇠⌧ 1

<latexit sha1_base64="QRyh2QFd8jBzw8pV8zs6ahisoUM="></latexit>

S =

Z
ddx

1

2
(�̇2

L + �̇2
T )�

1

2
v2T (r�T )

2 � 1

2
v2L(r�L)

2 + .....

Nothing terribly interesting from a Wilsonian point 
of view, but there is something hidden here!



Consider a “Beam” (string) Embedded Solid

d

L

<latexit sha1_base64="6cu49OTILwFl7HnPR4cPZiS/vcE=">AAAB7nicbVA9SwNBEJ3zM8avqKXNYhCs4p0EtQzaWFhEMB+QHGFvby5Zsrd37O4JIeRH2FgoYuvvsfPfuEmu0MQHA4/3ZpiZF6SCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOokUwwbLBGJagdUo+ASG4Ybge1UIY0Dga1geDv1W0+oNE/koxml6Me0L3nEGTVWaoXn910hvF6p7FbcGcgy8XJShhz1XumrGyYsi1EaJqjWHc9NjT+mynAmcFLsZhpTyoa0jx1LJY1R++PZuRNyapWQRImyJQ2Zqb8nxjTWehQHtjOmZqAXvan4n9fJTHTtj7lMM4OSzRdFmSAmIdPfScgVMiNGllCmuL2VsAFVlBmbUNGG4C2+vEyaFxXvslJ9qJZrN3kcBTiGEzgDD66gBndQhwYwGMIzvMKbkzovzrvzMW9dcfKZI/gD5/MHhtSPDQ==</latexit>

d/L ⌧ 1

Consider the action for the transverse mode:
<latexit sha1_base64="aWHsgOPqx+Pw1GYswenioRBug6M="></latexit>

S =

Z
d2x

1

2
�̇2 + C1(r2�)2 + ....

Conspicuously absent is :
<latexit sha1_base64="edU1lH0//hxQojFb09l2flXMAAQ=">AAAB+HicbVBNS8NAEN34WetHox69LBahXkpSinosevFYwX5AE8tku2mXbjZhdyPU0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmBQlnSjvOt7W2vrG5tV3YKe7u7R+U7MOjtopTSWiLxDyW3QAU5UzQlmaa024iKUQBp51gfDPzO49UKhaLez1JqB/BULCQEdBG6tuliicg4IC9ZMTOH2p9u+xUnTnwKnFzUkY5mn37yxvEJI2o0ISDUj3XSbSfgdSMcDoteqmiCZAxDGnPUAERVX42P3yKz4wywGEsTQmN5+rviQwipSZRYDoj0CO17M3E/7xeqsMrP2MiSTUVZLEoTDnWMZ6lgAdMUqL5xBAgkplbMRmBBKJNVkUTgrv88ipp16ruRbV+Vy83rvM4CugEnaIKctElaqBb1EQtRFCKntErerOerBfr3fpYtK5Z+cwx+gPr8wdcOpJC</latexit>

(r�)2

There is no symmetry to protect this term: 
Apparent fine tuning



How can we understand this from the point of view 
of quantum field theory?

Action for embedded 
one D string:

<latexit sha1_base64="Gng5RF5NX4KRneyJt0IW9F/TSBo=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSxCBSmJFPVY9OKxgv2AJpTNdtMu3U3C7kYsoX/FiwdFvPpHvPlv3LY5aOuDgcd7M8zMCxLOlHacb6uwtr6xuVXcLu3s7u0f2IfltopTSWiLxDyW3QAryllEW5ppTruJpFgEnHaC8e3M7zxSqVgcPehJQn2BhxELGcHaSH27jLxkxKqeYkOBzz2N07O+XXFqzhxolbg5qUCOZt/+8gYxSQWNNOFYqZ7rJNrPsNSMcDoteamiCSZjPKQ9QyMsqPKz+e1TdGqUAQpjaSrSaK7+nsiwUGoiAtMpsB6pZW8m/uf1Uh1e+xmLklTTiCwWhSlHOkazINCASUo0nxiCiWTmVkRGWGKiTVwlE4K7/PIqaV/U3Mta/b5eadzkcRThGE6gCi5cQQPuoAktIPAEz/AKb9bUerHerY9Fa8HKZ47gD6zPH+HFk7U=</latexit>
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this system—it was known by Euler and Bernoulli who derived the equations of motion (the

“beam equation”) from microscopic considerations [8]. It implies, in particular, that the normal

oscillation frequencies of the bar are inversely proportional to the square of the bar’s length
3. Apparently, the IR renormalized coupling of '0 2 will relax to zero independently of the

composition of the bar, i.e. the UV physics.

Let us then consider the e↵ective theory description of this system to understand how this

apparent fine tuning comes about. Unlike for a fundamental string, we can label matter elements

along a material string or bar by a real number �(�, ⌧), where � and ⌧ are generic worldsheet

coordinates. This has to do with the spontaneous breaking of spacetime symmetries along the

string or bar, and is explained at length in ref. [? ]. Perhaps more simply, we just have to

generalize the formalism of the previous section to a one-dimensional solid, with one open end

corresponding to, say, � = �?, embedded in a four-dimensional Minkowski space, parametrized

by embedding coordinates Xµ(�, ⌧). In particular, the induced metric on our solid’s worldsheet

is g↵� = @↵Xµ@�Xµ, with y↵ = (�, ⌧). Thus, to lowest order in derivatives the action is the

generalization of the Nambu-Goto action

Sbar =

Z
d⌧d� ✓(�� �?)

p
g G(B) , B ⌘ g↵�@↵�@�� , (3.2)

where, as before, G is an arbitrary function.

The action is reparametrization invariant, and it is convenient to fix “unitary” gauge,

X0 = ⌧ ⌘ t , X1 = � ⌘ x , (3.3)

which can be done directly at the level of the action. After we do so, we are left with two

transverse degrees of freedom, X2 and X3, and a longitudinal one, �. Generalizing our analysis

of the 3D solid, we want to consider the ground-state solution

X2,3 = 0 , � = ↵x . (3.4)

and small oscillations about it. As before, ↵ measures the compression/dilation level of the bar

and, if we leave at least one end free, the bar will relax to a particular value of ↵, corresponding

to zero tension or pressure.

To see this, we can look for instance at the � equation of motion:

�(�� �?)
p
g
⇥
G(B)� 2BG0(B)

⇤
� 2✓(�� �?) @↵

⇥p
gG0(B)g↵�@��

⇤
= 0 . (3.5)

Any configuration of the form (3.4) obeys the bulk part of this equation of motion, but the

boundary part requires

G(B)� 2BG0(B) = 0 , B = ↵2 , (3.6)

which is the one-dimensional analog of (2.13). Notice that this does correspond to a zero ten-

sion/pressure condition, since the world-sheet stress-energy tensor is

T̃↵� = 2
p
g G0@↵�@��+

p
g g↵�G , (3.7)

3We thank Ben Freivogel and Federico Piazza for educating us regarding this. It is thanks to conversations with

them that this project was born.
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Now, how are we to alter the solid action (2.1) to take into account that the solid has a fixed

boundary in comoving space and that the boundary is free to move in physical space? The most

convenient approach seems to be [12] to write the action as

S =

Z
✓
�
F (�)

�
G(BIJ)d4x , (2.6)

and leave the variational principle untouched: the ✓-function ensures that only the interior of the

solid contributes to the action, and the fact that no constraint on the field variations is imposed at

the boundary of the solid ensures that the fields are free to vary there, that is, that the boundary

is free to move.

One can derive the equations of motion just by varying the action above; however, for our

purposes, it is more convenient to phrase them in terms of stress-energy conservation. The

stress-energy tensor reads

Tµ⌫ = ✓
�
F (�)

�
T̃µ⌫ , (2.7)

where T̃µ⌫ = 2
@(

p
g G)

@gµ⌫ and we have used that F (�) is independent of the space-time metric.

Stress-energy conservation for a static configuration then implies

@iT
i⌫ = �

�
F (�)

� @F

@�K
(@i�

K)T̃ i⌫ + ✓
�
F (�)

�
@iT̃

i⌫ = 0 . (2.8)

The coe�cient of the ✓-function gives us the usual bulk eom’s for a static system,

@iT̃
i⌫ = 0 . (2.9)

In addition, however we have boundary eom’s coming from the �-function. These are particularly

clear if we specialize to the ground state (2.5) and use the fact that nI(�?) / @F
@�I is the normal

to the boundary at the boundary point �I = �I? 1. We have

ni(�
?) T̃ i⌫(�?) = 0 . (2.10)

Given that T̃µ⌫ in the ground state (2.5) is homogenous and that moving around a closed boundary

nI(�?) explores all possible spatial directions, we then have, in particular,

T̃ ij = 0 everywhere. (2.11)

This is just the relaxation of the tension of the solid when the boundaries are free to fluctuate.

Notice that for a configuration like (2.5), the stress-energy tensor depends on ↵. So, eq. (2.11)

can be obeyed only if there is a value of ↵ for which a certain, G-dependent condition is obeyed.

This is akin to minimizing a potential: if the potential has no minimum, there are no static

solutions. Specifically, the bulk stress-energy tensor reads

T̃µ⌫ = 2
@G

@BIJ
@µ�

I@⌫�
J
� ⌘µ⌫G . (2.12)

1We will drop the I index on �?I from here on to avoid clutter and confusion with indices.
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(On shell)
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and so on a configuration like (3.4) we have that the tension is

T = �T̃11 = 2BG0(B)�G(B) , (3.8)

which vanishes when eq. (3.6).

So far the story has been very similar to the 3D solid one, and thus not particularly surprising.

What makes this system crucially di↵erent is that the vanishing of the tension in the ground state

now directly implies the vanishing of a relevant Wilson coe�cient in the excitations’ action. This

can be seen by expanding the action (3.2) around the ground state and using the tension relaxation

condition (3.6); but, in fact, there is a deep structural reason behind it, which makes it manifest:

the action (3.2) depends on the transverse embedding fields ~' = (X2, X3) only through the

induced metric g↵� � @↵~' · @� ~', which is quadratic in them. Thus, to quadratic order in these

fields, it is enough to consider the expansion of the bar action to first order in induced-metric

perturbations, which, by definition, yields the world-sheet stress energy tensor:

Sbar �
1

2

Z
d4x T̃↵� @↵~' · @� ~' . (3.9)

This directly implies that whenever the tension vanishes, so does the coe�cient of ~' 02, thus

explaining the apparent paradox we started this section with. This connection is enforced by

symmetry, because it follows from the structure of the action, which is a consequence of symmetry.

What is not a consequence of symmetry is the vanishing of the tension in the first place, which

follows from leaving the boundary conditions free.

If one goes beyond the lowest-derivative action (3.2) and introduces higher-derivative terms,

involving for instance the world-sheet extrinsic and intrinsic curvatures weighed by appropriate

powers of the bar’s thickness, one finds all possible higher-derivative corrections to the excitations’

action, such as the '002 term in (3.1). However, none of this will a↵ect eq. (3.9) and the associated

connection between vanishing tension and vanishing coe�cient for ~' 02, since eq. (3.9) follows

directly from the definitions of the induced metric and of the world-sheet stress-energy tensor.

4 Surface Tension E↵ects

Let us go back to the 3D case. The alert reader will have no doubt recognized that our analysis

has not been systematically consistent, as the existence of the bounding ✓-function breaks the

shift invariance acting on �I . While bulk shift symmetry is preserved, there is nothing that

stops us from writing down terms that are proportional to delta functions and derivative thereof

localized at the boundary of our solid. Such terms will be responsible for a surface tension and

higher derivative generalizations thereof, and we have to ponder to what extent they a↵ect our

analysis and conclusions.

By appealing to some somewhat implicit geometric principle or intuition, surface tension

in solids and liquids is usually modeled via a higher-dimensional, non-relativistic version of the

Nambu-Goto action. However, we believe that the most general symmetry-based characterization

of surface tension and other surface terms will be more complicated than that. For instance,

the example we studied in the previous section shows explicitly that, in the case of material

submanifolds, there is more to physics than just the geometry of the submanifold: the field �,
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What does this imply for the Wilson Coefficients?

We see that the vanishing of the Wilson coefficient Is a conequence of the 
boundedness of the target space. This is a dynamical relaxation mechanism 

though we have not had to do ``engineering’’.

How can we generalize this mechanism?

-Space-time symmetry breaking

-Boundedness of Target Space

How can we choose our vanishing Wilson coefficients?



Consider now a static configuration, like in sect. ??. To the l.h.s. of the static conservation

equation (2.8), we should now add

@iT
i⌫
bdy = C1`

h
�
�
F (�I)

�
|@IF |

⇣
@iT̃

i⌫ +
@i |@IF |

|@IF |
T̃ i⌫

⌘
+ �0

�
F (�I)

�
|@IF | @KF @i�

K T̃ i⌫
i
(4.10)

Conservation of the total stress energy implies that in the static ground state

⇤(@I |nK |)TBI⌫(�?) + ⇤ |nK | @IT
BI⌫(�?) + nI T̃

I⌫(�?) = 0. (4.11)

If we take our surface to be uniform with one natural scale (say a sphere with radius R), then

we can se that the bulk tension will scale like T̃ ⇠ ⇤/R and we generate a hierarchically small

coupling. Stated another way, the surface tension balances the bulk stress, which will scale like

the cut-o↵ over the radius of curvature. One could protest that we have inserted a small number

⇤/R, in violation of naturalness, in our action. Indeed, where does this scale R come from?

However, if choosing R � ⇤ is a fine tuning in this field theory, then all macroscopic objects are

finely-tuned! If we take that attitude however, it would seem that the standard model hierarchy

problem, or even the cosmological constant problem is just the tip of the iceberg when it comes

to fine tunings in nature.

5 The superfluid and Supersolid

So far we have shown that bounded target space field theories lead to apparent fine tunings,

but they have only applied to kinetic terms. How can we generalize this mechanism to relax

say, the cosmological constant. To do so we will need to break time-translation invariance which

can be accomplished by considering a superfluid whose symmetry breaking pattern for a zero

temperature superfluid is non-linearly realized by a single Goldstone [] with an action of the form

S =
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ddxP (X) (5.1)

where X = @µ�@µ� and
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We can thus think of a superfluid as a “time solid” where �(t) is the Lagrangian picture and t(�)

is the Eulerian. The stress energy tensor is given by
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⌫�� gµ⌫P (X) (5.3)

If we impose the constraint � < �? so that

✓(F (�)) = ✓(�� �?) (5.4)

such that the field is compact, then we find that

hT̃ 0⌫(µt = �?)i = 0. (5.5)

Implying that on the ground state solution � = µt we have the constraint

hT̃00i = 2µ2P 0(µ2)� P (µ2) = 0. (5.6)
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Following the same line of reasoning as for the 
solid we find



But we can do even better: We want to 
see if we can make the CC vanish

Consider a Super-Solid

The vacuum energy automatically vanishes, as a consequence of the boundedness of the target

space. Notice that this mechanism is independent of the choice for �?. If we include a boundary

action as well then, as in the case of the solid the cosmological constant will become non-zero

and hierarchically small.

Finally a super-solid is a solid with an additional broken U(1) symmetry and an additional

Goldstone �I . We may then bound all the directions such that

F (�I ,�) = ✓(�I
� �I

0)✓(�� �0). (5.7)

6 Conclusions

It is had been a generally accepted tenet of quantum field theory that parameters in the action

that are unprotected by symmetries should take on values of order of the cut-o↵ of the theory. As

is well appreciated this situation can be avoided if the parameter is taken to be dynamical and

allowed to relax. It would seem that, in general, generating such a mechanism takes insightful

model building. Here however, we have shown that it can be quite generic, if one allows oneself

to break space-time symmetries, and bound the target space. The former assumption is not

a speculative stretch in the sense that our universe certainly has this property, but the ladder

assumption is less generic.

In the past [] relaxation mechanism have been realized by allowing scalar fields to evolve

during the evolution of the universe. Its evolution halts at some particular epoch via a “trig-

gering mechanism”. Furthermore, when these models are used to solve the hierarchy problem,

typically they rely on have super-Planckian excursions and they also necessitate small dimen-

sionless quantities in the action, Here we have shown that theories with compact target spaces

can lead to relaxation mechanisms though in a limited fashion. Firstly, at least for the class of

models explored here, the mechanism will only relax coe�cients of quadratic terms in the action.

Furthermore, it is necessary to break translational invariance, so it does not seem at face value

at least, to shed any light on the fine tuning of the Higgs mass. We have presented a model with

vanishing vacuum energy however, though the theory must have a cut-o↵ on time.

A The bar as an EFT puzzle: dimensional reduction

Consider a rectangular solid. At discussed above it will have gradient energy ⇠ (@�)2 for all

of its fields. Now we consider shrinking the sides to form a rod. In the reduced theory the

transverse oscillations have a gradient energy which scale as (@2�)2. From the point of EFT this

is rather puzzling since typically dimensional reduction does not change the dispersion relation.

This theory has a very strange renormalization group trajectory. The problem does not lie with

the EFT but in the full theory. The EFT is only valid for length scales much longer than the

thickness of the rod, but the full theory must be treated with care at long distances.

We can gain some intuition by understanding how the energetics changes as we match from

the full to the IR theory. Physically the vanishing of the beam this is a consequence of imposing

open boundary conditions and an asymmetry in the geometry, as discussed in for example [8],

whose arguments we summarize here. Consider the set up in figure (1). When a bar is bent there
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This seems to work in setting Wilson coefficients to zero, 
but what about finite but small Wilson coefficients?

4 Surface Tension E↵ects

Let us go back to the 3D case. The alert reader will have no doubt recognized that our analysis

has not been systematically consistent, as the existence of the bounding ✓-function breaks the

shift invariance acting on �I . While bulk shift symmetry is preserved, there is nothing that

stops us from writing down terms that are proportional to delta functions and derivative thereof

localized at the boundary of our solid. Such terms will be responsible for a surface tension and

higher derivative generalizations thereof, and we have to ponder to what extent they a↵ect our

analysis and conclusions.

By appealing to some somewhat implicit geometric principle or intuition, surface tension

in solids and liquids is usually modeled via a higher-dimensional, non-relativistic version of the

Nambu-Goto action. However, we believe that the most general symmetry-based characterization

of surface tension and other surface terms will be more complicated than that. For instance,

the example we studied in the previous section shows explicitly that, in the case of material

submanifolds, there is more to physics than just the geometry of the submanifold: the field �,

which has nothing to do with the embedding coordinates and thus with the geometry of the

bar, is the one responsible for letting the tension relax to zero; in contrast, for Nambu-Goto the

tension is a constant parameter.

We leave developing a general framework and understanding the systematics of this to future

work. For the time being, we just want to get a sense of the order of magnitude we can generically

expect for surface tension-like e↵ects. To this end, let’s trade the theta function cut-o↵ for a

smooth function ✓` with a finite thickness (membrane depth) `, say of order of the inter-atomic

spacing, i.e. the UV cut-o↵. For instance, for a spherical solid of comoving radius R we could

choose

✓`
�
F (�I)

�
=

1

2

⇣
1 + tanh

R� |�I
|

`

⌘
=

1

1 + e�2(R�|�I |)/` . (4.1)

Now, the derivative expansion can be thought of as an expansion in the UV cuto↵, ` in our

case. Unfortunately, the function above is non-analytic in ` at ` = 0. In fact, any `-dependent

smooth function of � that reduces to a ✓-function for ` ! 0 must be non-analytic in `, since the

✓-function is trivial everywhere apart from its “jump”—|�I
| = R in the example above—where

it is singular. We need not despair. We just have to interpret the ` ! 0 limit and the associated

expansion in powers of ` in a distributional sense.

In general, for a one-dimensional step-function of thickness ` we can expect an expansion of

the form

✓`(x) = ✓(x) + C1 ` �(x) +
1

2!
C2 `

2�0(x) + . . . , (4.2)

where, barring accidents or symmetry reasons, the Cn coe�cients are of order one. We show this

in Appendix ??. It so happens that, owing to the tanh’s being odd about its midpoint, for the

explicit ✓` function above all Cn’s with odd n vanish, but in more general cases they won’t.

Let’s then see what this implies in our case. For simplicity, let’s stop at first order in `. In

general, we expect

✓`
�
F (�I)

�
= ✓

�
F (�I)

�
+ C1 ` �

�
F (�I)

�
| @IF | + . . . , C1 = O(1) , (4.3)
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The theta function breaks the shift symmetry: No new terms must be included on 
the boundary
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Thickness of surface

where the extra factor of | @IF | ensures that the result is independent of the choice of function

F we choose to parameterize a fixed surface.

This means that regularizing the ✓-function in (2.6) by giving it a finite thickness ` and

allowing for a more general dependence on the fields close to the boundary, is equivalent to

adding the boundary action

Sbdy = `

Z
d4x �(F (�I)) | @IF | Lbdy(B

IJ ,�I) , (4.4)

where we reabsorbed the C1 coe�cient of eq. (4.3) into ` and for now the boundary Lagrangian

density Lbdy is undetermined. We emphasize once again that we do not know yet how the

symmetries restrict the functional form of Lbdy. The important aspects of this boundary action,

however, are the explicit ` in front of it and the fact that, on physical and dimensional grounds,

we can expect Lbdy to be of the same order of magnitude as the bulk Lagrangian density G(BIJ)

in (2.6), which, on a static configuration, is directly related to the energy density ⇢ = T 00 (see

eq. (2.12)):

Lbdy ⇠ G = �⇢ . (4.5)

In fact, for non-relativistic solids, apart from the rest-mass contribution to ⇢, all entries of the

stress-energy tensor are expected to be at most of order ⇢c2s, where cs is the speed of sound, which

is possibly much smaller than one. This implies that the above estimate for Lbdy is, in general,

an upper bound.

Then, the static conservation equation (2.8) will be corrected by new boundary contributions,

implying a relaxation condition like (2.10) but now with a nonzero r.h.s. However, this will be of

order `⇢ times the dimensionally needed power of the typical length scale R associated with the

boundary our solid, such as its typical radius of curvature. We thus expect the ground state to

have

T̃ij ⇠
`

R
⇢ , (4.6)

which is much smaller than ⇢ as long as our solid is much bigger than the UV cuto↵ `.

For example, if we take as a crude (but standard) model for the boundary terms (4.4) a

constant energy density,

Lbdy(B
IJ ,�I) = const ⌘ �⇤ , (4.7)

corresponding to a constant surface tension � = ⇤ `, we have a total stress-energy tensor of the

form

Tµ⌫ = ✓
�
F (�)

�
T̃µ⌫ + `⇤ �(F (�I)) | @IF | ⌘µ⌫ , (4.8)

where, as before, T̃µ⌫ is the bulk stress-energy tensor. The static conservation equation (2.8) then

gets modified to

for the purpose of estimating the expected order of magnitude of such e↵ects. We are by no

means implying that the most general boundary terms must take this form.

The boundary action adds a localized contribution to the stress-energy tensor:

T bdy
µ⌫ = C1` �(F (�I)) | @IF | T̃µ⌫ + . . . , (4.9)

where T̃µ⌫ is, in this crude model, the same entering eq. (2.7).
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Surface effects are suppressed by the ratio:
<latexit sha1_base64="t61HfpCW2k6PjyXhbi+f4Av14cA=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxhLuGqEeiF4/44JHAhswOA0yYnd3M9JqQDZ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJbCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbqZ+84lrIyL1iOOY+yEdKNEXjKKVHuTZfbdYcsvuDGSZeBkpQYZat/jV6UUsCblCJqkxbc+N0U+pRsEknxQ6ieExZSM64G1LFQ258dPZqRNyYpUe6UfalkIyU39PpDQ0ZhwGtjOkODSL3lT8z2sn2L/yU6HiBLli80X9RBKMyPRv0hOaM5RjSyjTwt5K2JBqytCmU7AheIsvL5PGedm7KFfuKqXqdRZHHo7gGE7Bg0uowi3UoA4MBvAMr/DmSOfFeXc+5q05J5s5hD9wPn8A5VuNjg==</latexit>

l/R

Extrinsic 
curvature:

<latexit sha1_base64="ZbSVwDNQrUi/jZd5lP033olIEMY=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKexKUC9C0IvHGMwDkiXMTnqTIbOzy8ysEEL+wIsHRbz6R978GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/loxkn6Ed0IHnIGTVWqtdvesWSW3bnIKvEy0gJMtR6xa9uP2ZphNIwQbXueG5i/AlVhjOB00I31ZhQNqID7FgqaYTan8wvnZIzq/RJGCtb0pC5+ntiQiOtx1FgOyNqhnrZm4n/eZ3UhNf+hMskNSjZYlGYCmJiMnub9LlCZsTYEsoUt7cSNqSKMmPDKdgQvOWXV0nzouxdlisPlVL1NosjDydwCufgwRVU4R5q0AAGITzDK7w5I+fFeXc+Fq05J5s5hj9wPn8AMUiNJg==</latexit>

R =

So including the effects of surface terms leads to a new relaxation condition

<latexit sha1_base64="Xk+0Yw/sVT5OKljW7MGRCNRRZ5U=">AAACBXicbVC7TsMwFHXKq5RXgBEGiwqJqUpQBYwVLAwMBfUlNaFyHKe1ajuR7SBVURYWfoWFAYRY+Qc2/gb3MUDLkSwdnXOPru8JEkaVdpxvq7C0vLK6VlwvbWxube/Yu3stFacSkyaOWSw7AVKEUUGammpGOokkiAeMtIPh1dhvPxCpaCwaepQQn6O+oBHFSBupZx82oKcoh14kEc5Ynt3l0Lsx+RDdV3t22ak4E8BF4s5IGcxQ79lfXhjjlBOhMUNKdV0n0X6GpKaYkbzkpYokCA9Rn3QNFYgT5WeTK3J4bJQQRrE0T2g4UX8nMsSVGvHATHKkB2reG4v/ed1URxd+RkWSaiLwdFGUMqhjOK4EhlQSrNnIEIQlNX+FeIBMH9oUVzIluPMnL5LWacU9q1Rvq+Xa5ayOIjgAR+AEuOAc1MA1qIMmwOARPINX8GY9WS/Wu/UxHS1Ys8w++APr8weK4pf6</latexit>

T ⇠ l

R
⇤4



Perhaps no new physics at TeV is even ``More Interesting”?


