Self-Interacting Dark Matter and Its Signatures

Hai-Bo Yu
University of California, Riverside

Rabi-Fest, University of Maryland, October 21, 2022

Dark Matter

- The prevailing dark matter paradigm: cold, collisionless particles
- CDM works very well on large scales >O(100) kpc
- Testing CDM on galactic and sub-galactic scales

Beyond the CDM Paradigm

- Most of matter particles in the Standard Model have large self-interactions
- What happens if dark matter particles have large/strong self-interactions

Self-Interacting Dark Matter

Self-interactions thermalize the inner halo

 $\sigma/m_X > 1 \text{ cm}^2/g \text{ (close to nuclear scales)}$

$$\Gamma \simeq n\sigma v = (\rho/m_X)\sigma v \sim H_0$$

see Tulin, HBY (2017) for a review

Spergel, Steinhardt (PRL 1999)

Searching for Strongly Interacting Massive Particles (SIMPs)

R. N. Mohapatra¹, F. Olness², R. Stroynowski², V. L. Teplitz²

¹Department of Physics, University of Maryland, College Park, MD, 20742

² Department of Physics, Southern Methodist University, Dallas, TX 75275

(May, 1999)

Mirror Dark Matter and Galaxy Core densities

R. N. Mohapatra¹ and V. L. Teplitz^{2,3}

- ¹Department of Physics, University of Maryland, College Park, MD, 20742
- ² Department of Physics, Southern Methodist University, Dallas, TX-75275
- ³ Address until 06/30/2001, Office of Science and Technology Policy, Eexcutive Office of the President, Washington, DC 20502.

(January, 2000)

Mirror Matter as Self Interacting Dark Matter

R. N. Mohapatra^a, S. Nussinov^b and V. L. Teplitz^c

^aDepartment of Physics, University of Maryland, College Park, MD-20742

^b Department of Physics, Tel-Aviv University, Tel Aviv, Israel

^c Department of Physics, Southern Methodist University, Dallas, TX-75275

and Office of Science and Technology Policy, Executive Office of the President, Washington D. C.

-20502

(November, 2001)

PHYSICAL REVIEW D, VOLUME 70, 057301

Reactor searches for neutrino magnetic moment as a probe of extra dimensions

R. N. Mohapatra, Siew-Phang Ng, and Haibo Yu My first paper with Rabi

Department of Physics, University of Maryland, College Park, Maryland 20742, USA (Received 6 May 2004; published 16 September 2004)

ournal of Cosmology and Astroparticle Physics

Hidden charged dark matter

My first paper on SIDM

Jonathan L. Feng, Manoj Kaplinghat, Huitzu Tu and Hai-Bo Yu

Department of Physics and Astronomy, University of California, Frederick Reines Hall, Irvine, California 92697, U.S.A.

E-mail: jlf@uci.edu, mkapling@uci.edu, huitzut@uci.edu, haiboy@uci.edu

Received May 28, 2009 Revised June 11, 2009 Accepted June 11, 2009 Published July 3, 2009

PRL **104**, 151301 (2010)

PHYSICAL REVIEW LETTERS

week ending 16 APRIL 2010

Halo-Shape and Relic-Density Exclusions of Sommerfeld-Enhanced Dark Matter Explanations
of Cosmic Ray Excesses
SIDM with a Yukawa potential

Jonathan L. Feng, Manoj Kaplinghat, and Hai-Bo Yu

Department of Physics and Astronomy, University of California, Irvine, California 92697, USA

(Received 15 December 2009; published 15 April 2010)

Dwarf Galaxies in the Local Group

- Blue curves denote the simulated halos that are supposed to host 10 observed dwarf galaxies (black squares) in the Local Group of the Milky Way
- CDM: the simulated halos are too dense

Dark-Matter-Deficient Galaxies

van Dokkum+ (Nature 2018, AJPL 2019)

- DF2/DF4 may belong to the NGC1052 group
- Tidal striping can remove dark matter mass

Halo concentration c₂₀₀

CDM: 4 (-4 σ from the median)

SIDM3: 7 (-1.8σ) SIDM5: 10 (-0.4σ)

w/Yang, An (PRL 2021)

Seeding Supermassive Black Holes

GR instability conditions w/Feng, Zhong (ApJL 2021, JCAP 2022)

Which Cross Section? ×

Mirror Matter as Self Interacting Dark Matter

(2001)

R. N. Mohapatra^a, S. Nussinov^b and V. L. Teplitz^c

II. EFFECTIVE SCATTERING CROSSSECTION FOR MIRROR HYDROGEN

For small relative velocities of atoms of order $\beta_{virial} \sim 10^{-3}$, the total atom-atom elastic scattering crosssections are of order πR_{atom}^2 . For H or He atoms, $R_{atom} \sim 0.55$ angstroms leading to $\sigma_{HH} \simeq 10^{-16}$ cm². If we take the mirror scale factor to be about 30-100, then the Bohr radius of the corresponding hydrogen atoms will scale inversely with it and will give $\sigma_{H'H'} \simeq 10^{-19} - 10^{-20}$ cm². This value is higher than the value apparently required for solving the core density problem by a factor of 100-1000. The new observation in this note is that the naive use of the cross section is not adequate for our discussion and there is indeed a substantial suppression factor which arises from a more careful analysis.

The main point is that the cross section relevant for avoiding the catastrophic accumulation of dark matter particle particles is *not* the total elastic cross section, σ_{el} but the transport cross section, σ_{tr} , to which large angle scattering contributes more strongly i.e.

$$\sigma_{tr} = \frac{1}{4\pi} \int d\Omega (1 - \cos\theta) \frac{d\sigma}{d\Omega} \tag{1}$$

For isotropic (sav S-wave) or slightly backward hard sphere scattering, σ_{el} and σ_{tr} are roughly the $\beta \approx \frac{d\sigma}{d\Omega} = \frac{4\alpha^2}{m'\beta^4(1-\cos\theta)^2}$ as upto $\ell_{eff} = m_l$ and $\sigma_{tr} = \frac{8\alpha^2}{m'\beta^4} \ln(\theta_{min})$ by velocity of $\sigma_{tr} = \frac{8\alpha^2}{m'\beta^4} \ln(\theta_{min})$ by veloci

ment; (ii) the collision virial velocity is smaller than the velocity of the electron in the atom

Settle the Debate with N-body Simulations

viscosity/heat conduction w/Tulin, Zurek (PRL, PRD 2013)

Moller SIDM scattering: Girmohanta, Shrock (2022)

Cosmic Colliders of Dark Matter

Ultra-diffuse galaxies (dark-matter-deficient)

Milky Way satellites

Spiral galaxies

Galaxy clusters

 $M_{halo} < \sim 10^8 M_{\odot}$

 $M_{halo}\sim 10^8~M_{\odot}$

 $M_{halo} \sim 10^9 \text{--} 10^{13} \, M_{\odot}$

 $M_{halo}\sim 10^{15}~M_{\odot}$

- Dark matter distributions of galaxies are more diverse than expected in CDM
- SIDM can produce the diversity
- DM self-interactions occur at fundamental scales $\sim 10^{-12}$ cm; change the dark matter distribution at astro scales $\sim 10^{22}$ cm, which can be detected!

Latest "Adventure" (Something that Rabi has not worked on)

A graph model for the clustering of dark matter halos

Daneng Yang Daneng Yang And Hai-Bo Yu

¹Department of Physics and Astronomy, University of California, Riverside, California 92521, USA (Dated: June 14, 2022)

- Graph models are constructed to explain "the rich gets richer": the world-wide-web, e-mail, social, protein, and metabolic networks
- We apply a graph model to study hierarchical clustering of dark matter halos

Literally: a teacher for a day is a father for a lifetime

Actually: a teacher is as important as one's own father and therefore one should forever respect his teacher