

Colliders: material resistivity

Tungsten resistivity versus temperature

- Resistive wall impedance and wake are proportional to √ρ
- Copper resistivity versus temperature and magnetic field
 - Simon, Drexler and Reed "Prope rties of copper and copper alloy s at cryogenic temperatures", 19 92
- Tungsten resistivity versus temperature
- Desai et al. "Electrical Resistivity of Selected Elements", 1984 Collider: material resistivity

Tungsten resistivity

- Tungsten resistivity versus temperature
 - Plot shows low temperature region of resistivity curve: very low resistivity below 60 K
 - Different data sets are plotted (dotted lines)
 - Recommend curve is the solid one: specimen with lowest residual resistivity

set 182). The present recommendations for the electrical resistivity of tungsten at temperatures below 40 K are based on the data of Batdalov *et al.* The values are for a specimen with residual resistivity of $0.0000150 \times 10^{-8} \Omega$ m reported by Berthel (data set 199) which represents the lowest value and, hence, the purest sample reported in the literature for tungsten.

2022-09-20

Collider: material resistivity

2022-09-20

Tungsten resistivity

- Lowest resistivity below 60 K is achieved for the purest tungsten sample
- Above 60 K, the different data sets (e.g different tungsten purities) become similar
- Also above this temperature tungsten resistivity becomes higher than copper resistivity

Collider: material resistivity

Tungsten resistivity

- Effect of RRR can be accounted for
 - Hust and Landford, "Thermal Co nductivity of Aluminum, Copper, Iron, and Tungsten for Temperat ures from 1 K to the Melting Poin t", 1984
- RRR (and therefore material purity) has a clear impact for temperature below 80 K

Resistivity versus temperature Tungsten resistivity (Desai) Tungsten resistivity, RRR=100 (Hust)

10³ Tungsten resistivity, RRR=100 (Hust) Tungsten resistivity, RRR=10000 (Hust) Copper resistivity (no magnetic field, RRR=70) Resistivity [n0m] 10¹ 10⁻¹ 10⁻³ -300× (10th \$°* **10**⁻⁵ 10⁰ 10¹ 10² 10³ т [К]

Tungsten resistivity

- Simulations for the colliders resistive wall impedance were performed with tungsten at 80 K or 300 K
- RRR has a small effect on tungsten resistivity at this temperature

Resistivity versus temperature Tungsten resistivity (Desai) 10³ Tungsten resistivity, RRR=100 (Hust) Tungsten resistivity, RRR=10000 (Hust) Copper resistivity (no magnetic field, RRK=70) Resistivity **[nΩm]** 10¹ **Simulations** 10⁻¹ 10⁻³ + 300× Cot. (20 K **10**⁻⁵ 10³ 10⁰ 10¹ 10² т [К]

 Other materials could be investigated to optimize shielding heat dissipation/mechanical strength/conductivity/cost

Electric resistivity of different materials, in $\boldsymbol{n}\boldsymbol{\Omega}\;\boldsymbol{m}$

	Copper (0 T)	Copper (7 T)	Tungsten [1]	Tungsten RRR=100 [2]	Tantalum [1]	Tungsten-Copper [3]	Tungsten-Rhenium [3]
10 K	0.746	0.657	1.37e-3	48.7	1.022	?	?
80 K	2.83	2.75	6.06	6.66	26.2	?	?
300 K	18	17.9	54.4	55.4	13.48	43.0	290

1: Desai et al. "Electrical Resistivity of Selected Elements", 1984

2:

Hust and Landford, "Thermal Conductivity of Aluminum, Copper, Iron, and Tungsten for Temperatures from 1 K to the Melting Point", 1984

2: https://www.matweb.com/search/DataSheet.aspx?MatGUID=7ce3abb99e274e18916b062affefff7e&ckck=1

3: https://www.matweb.com/search/datasheet.aspx?matguid=ec5e2badc6cf467191fd545182b139ef&ckck=1

2022-09-20

Collider: material resistivity