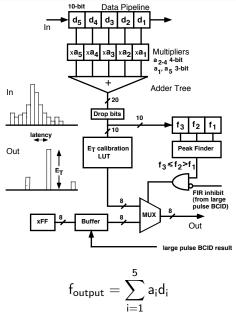
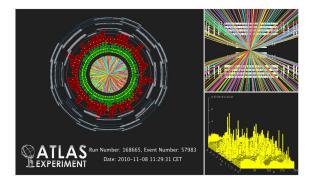
BCID Efficiency in Heavy Ion Data L1Calo Joint Meeting

Benedict Allbrooke

University of Birmingham


24th March 2011



Bunch Crossing Identification in L1Calo

- Trigger Tower pulses are several bunch crossings wide
- BCID system associates calo pules with a single bunch crossing
- Saturated pulses (~250GeV): Shape of leading edge of pulse
- Non Saturated(≲250GeV): Finite Impulse Response (FIR) Filter
- Currently useing a "Common" filter: coefficients fitted to general shape of pulses in regions
- Alternative is "Matched" filter: coefficients set for each tower
- Peak finder selects bunch crossing where $f_2 > f_1$ & $f_2 \geq f_3$

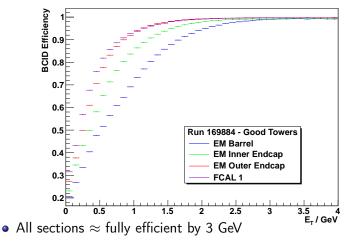
Motivation For Using Heavy Ion

- HI provides Huge numbers of low *E*_T towers & Collisions well separated in time
- Trigger Tower doesn't care what's in the beam pipe: only what's hitting it

HI angular multiplicities are different to pp which can skew summed efficiencies

Methodology

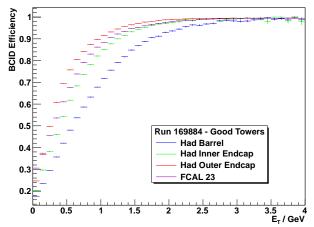
- L1Calo Ntuple Analysis framework
- Heavy Ion L1Calo Ntuples: NTUP_TRIG with p329 tag: Contain both layers of Towers where either has \geq 0.5GeV or ADC \geq 36 counts
- Runs Used: 168759, 168865, 168875, 169045, 169884
- Most plots use $\approx 1\%$ of Run 169884 \approx 6 minutes of running Large enough for negligible errors, Small enough to feasibly run
- For all plots require L1_MBTS Trigger & Primary Vertex
- \bullet All plots in terms of E_T from Calo systems not L1Calo E_T


$$\mathsf{Efficiency} = \frac{\mathsf{Calo} \; \mathsf{Cell} \; \mathsf{E}_\mathsf{T} \& \; \mathsf{BCID} > 0}{\mathsf{Calo} \; \mathsf{Cell} \; \mathsf{E}_\mathsf{T}}$$

WARNING

Method is inherently bias below $0.5 \mbox{GeV}$ so results presented below this are for interest only

Run 169884 - EM Regions for Good Towers


• Crack excluded - See later

- Turn on curves certainly not equal
- \bullet Barrel requires largest E_T as $|E_T|\approx |E|$ so small pulse

Run 169884 - Had Regions for Good Towers

 \bullet Wobble at higher E_T due to lowish statistics: most energy absorbed in ECAL

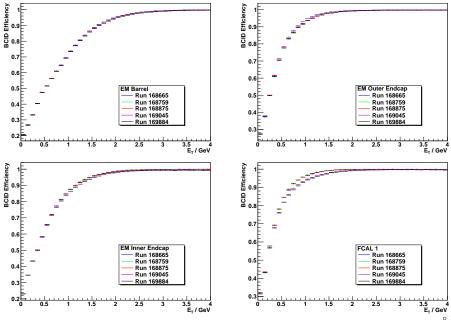
• All sections \approx fully efficient by 3 GeV

 \bullet Barrel requires largest E_T as $|E_T|\approx |E|$ so small pulse

Efficiency Tables for Run 169884

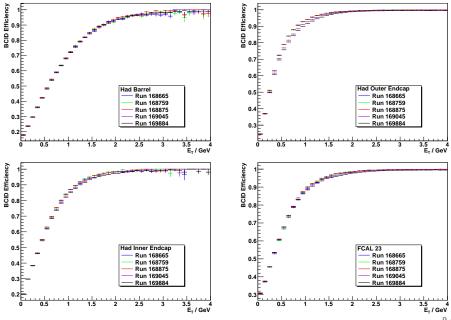
• EM Efficiencies:

Region	0.5	1.0	1.5	2.0	2.5	3.0
Barrel	0.50	0.71	0.87	0.94	0.98	0.99
Inner EC	0.62	0.85	0.94	0.98	0.99	0.99
Outer EC	0.74	0.93	0.98	0.99	1.00	1.00
FCAL1	0.79	0.93	0.98	0.99	1.00	1.00


E_T Values / GeV

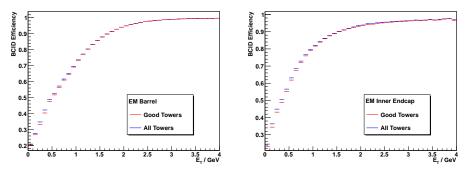
• Had Efficiencies:

E _T values / Gev									
Region	0.5	1.0	1.5	2.0	2.5	3.0			
Barrel	0.45	0.70	0.86	0.93	0.97	0.98			
Inner EC	0.58	0.84	0.94	0.97	0.99	0.99			
Outer EC	0.73	0.91	0.97	0.99	0.99	1.00			
FCAL23	0.64	0.87	0.95	0.98	0.99	0.99			


 E_{T} Values / GeV

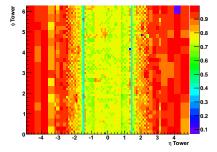
EM Regions - Run Comparison for Good Towers

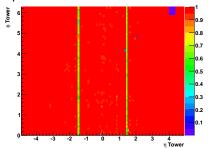
8/18


Had Regions - Run Comparison for Good Towers

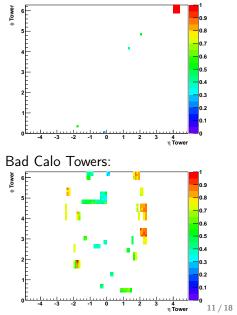
9/18

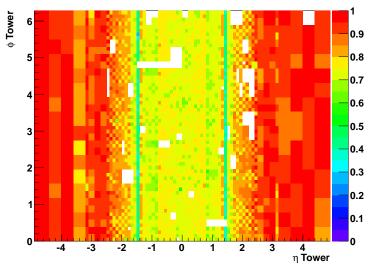
EM Steeper Turn On Curves When All Towers Included


• Initially surprising result: EM Barrel and Inner Endcap show steeper turn on curve for All towers

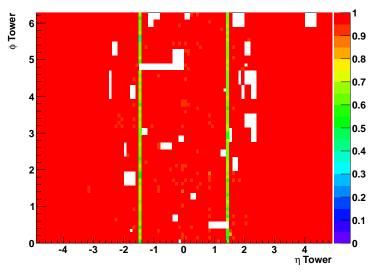

- \bullet Dead towers not really a problem in EM Barrel/Inner EC \rightarrow Difference solely from BadCalo Towers
- $\bullet\,$ EM Bad Calo Towers are missing front end board $\rightarrow\,$ OTX prob
- OTX problems causing Calo readout to miss part of energy so some tower deposits belong in higher bin than they're found in

EM Efficiency Map for $E_T = 0.5 - 2$ GeV and > 2 GeV


 $E_T = 0.5 - 2 \text{ GeV}$:

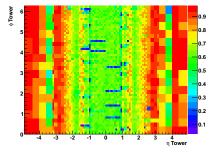

 $E_T > 2 \text{ GeV}$:

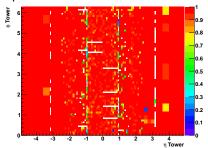
Dead Towers:

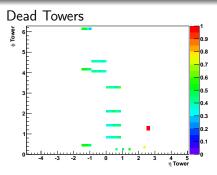


EM Efficiency Map for Good Towers $E_T = 0.5 - 2$ GeV

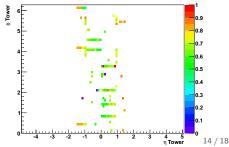
- Crack region shows lower efficiency
- Checkboard noise clearly visible


EM Efficiency Map for Good Towers $E_T > 2$ GeV

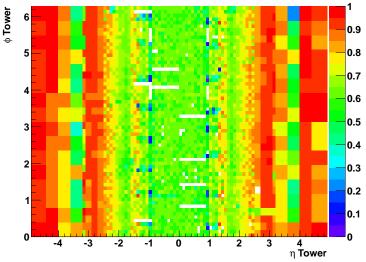

- Crack still performs poorly at higher E_T
- Some towers lagging behind


Had Efficiency Map for $E_T = 0.5 - 2$ GeV and > 2 GeV

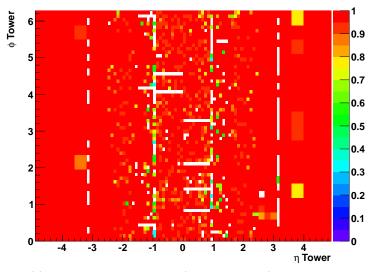
 $E_{T} = 0.5 - 2 \text{ GeV}$



 $E_{\mathsf{T}}>2~\text{GeV}$

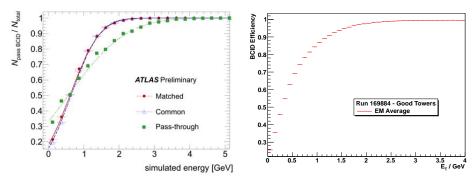


Bad Calo Towers



Had Efficiency Map for Good Towers $E_T = 0.5 - 2$ GeV

- FCAL tower ordering opposite in +/- η
- Problems at joins, e.g. Barrel to Ext Barrel at $\eta = 1$
- Checkerboard noise again


Had Efficiency Map for Good Towers $E_T > 2$ GeV

Problems at joins, e.g. Barrel to Ext Barrel at η = 1
Lots of "Good" towers still performing badly

Very Brief Comparison to Simulation

• Comparison of average EM BCID Efficiency with Simulation made by Dave Hadley

- Multiplicities not equal so not entirely trustworthy
- Different methodology so even less trustworthy
- Simulation appears to show faster Turn-on
- Requires proper Athena study

Conclusions

- BCID performing well
- Fully efficient from fairly low E_T
- EM Crack region horrible but will hopefully improve
- Barrel requires higher E_T for full efficiency
- OTX problems make efficiency appear improved: Illusion
- Data and Simulation are of slightly unknown agreement

To Do List:

- Measure improvement in newly cabled EM crack region using this year's early data
- Perform study on simulated data within Athena
- Compare to a pp data study
- Feed any differences/corrections into L1Calo Simulation
- Noise Study