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* Predict what will happen to the existing L1Calo trigger as luminosity is increased

* Simulations up to and beyond design luminosity
— Ended up going up to 3E34 for this iteration of the analysis
* Investigate quantities at the trigger tower level...
— Peak-finding efficiency
— Effect of noise cut
— Tower multiplicity/occupancy
— Energy resolution (or deltas)
e ..and at the ROl level...
— Trigger rates
— Efficiency turn-on curves
— Energy resolutions
e Understand all this within different bunch structures and L1Calo noise thresholds
— 25ns, 50ns and 150ns spacing
— Position in bunch train
— Noise thresholds of 2, 4 and 10 (old LUT strategy)



Bunch Structures
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Simulating the full LHC bunch structure
Taken from http://sl.web.cern.ch/SL/sli/cycles.htm

Bunch Disposition in the LHC, SPS and PS
LHC (1-Ring) = 88.924 ps

3-batch 4—batch

MﬂﬂHH
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SPS 7/27 LHC

T

WWHWHHWHWHHWHW

Filling Scheme 2

3564 = {[(72b + 8¢) x 3 + 30e] x 2+[(72b + 8¢) x 4 + 31e]} x 3
+{[(72b + 8e) x 3 + 30e] x 3+ 81e}

25ns spacing has 2808/3564 filled bunches
For 50ns spacing, just removed every other filled bunch (leaving 1404 filled)
For 150ns spacing, removed 5 out of every 6 (leaving 468 filled)

— End of 2010 proton physics was with 150ns spacing
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Simulating Pileup

Vs = 14TeV

Vary the bunch-instantaneous luminosity by changing the mean of the poisson-
distributed number of collisions.
— Mean of 23 collisions per filled bunch = 1E34

This mean has been used in production samples with bunch spacing of 25ns. Using
the filling scheme shown on last slide, then this assumes:

23 x(2808/3564)
(25ns)x Oy,

L=1x10"cm™s™" =

= O\p = 12.5mb

e But the Minbias sample used is from pythia, which reports a cross section of
54.7mb. For design luminosity (1E34), this gives a mean of 17.25 collisions per
bunch

* Latest minbias analyses suggest pythia cross sections are consistent with data, so
keep in mind luminosities quoted in this talk are probably upper estimates
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Simulating Pileup (2)
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Used a dataset of 1Million minbias events as non-diffractive minbias pileup
— mcl0_14TeV.105001.pythia_minbias.merge.HITS.e663 s1107_s1109/

When estimating trigger rates, a sample of empty events are used as the “signa
event: all signals are due to the minbias pileup

For the ROI efficiency studies (later in talk), the signal events were not empty, so
one minbias pileup event was subtracted from the central (triggered) bunch
crossing, to maintain the same mean number of collisions

— Assumes the signal event is part of the minbias non-diffractive cross section
Cavern, beam halo and beam gas contributions are neglected

— See slides 5 and 6 of James Koll’s talk (http://indico.cern.ch/getFile.py/access?
contribld=7&sessionld=1&resld=0&materialld=slides&confld=126214)

Simulated pileup in bunch crossings from -23 to +7 bunches:

II)

n minbias events goes in each of these bunches, where n is from a poisson distribution
/\) (n could be different for
every bunch)

Signal event goes here
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Trigger rate studies
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 Want to determine threshold, as a function of luminosity, that gives a fixed trigger

rate for a given trigger type
* Trigger types investigated: EM, EMI, TAU, TAUI, JET4, JETS, TE, XE

— EMl isolation cuts were: EMIsol=4, Hadlsol=3, HadCore=2

— TAUI isolation cuts were: EMIsol=6

* For each trigger type, plot trigger rate as a function of threshold, and read off the
threshold that gives the desired rate (in this study, that is 20kHz)

Rate

20kHz

Rate =

N

pass

C.
Jilled o AO MH7
N 3564

So, e.g., N=100,000 with
25ns structure (Bcg,,4=2808)
gives N ;=63 for 20kHz

>

TolLs)

Will Buttinger

TZO(Ll)

Threshold

6 of ..best not to know



z E a3 UNIVERSITY OF
Why in-house MC sample production? y CAMBRIDGE

* Production samples have no bunch structure (and only 25ns spacing)

 The production minbias pileup samples are susceptible to biases being introduced
that significantly affects the rates we are interested in

— Underlying event reuse mechanism driven by a random number generator, which
causes some events to appear in the central bunch crossing more than others

Minbias Event Use Multiplicity (Central Bunch Crossing) | evem.UseMulﬂplicity N ' ‘ '
_ Entries 225708 | T 107 —— 69 Collisions/BX (3E34)
= RMS 4:632 5] . 46 Collisions/BX (2E34)
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all PR — 11.5Collisions/BX (5E33) |
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If th ts h Other reasons for custom MC samples
e * Simulation “window” in production samples of -32 to +4

high energy ROl in them, does not cover the full L1Calo simulation range
they will dominate the * Not expected to cause a significant difference in

rate calculation at low results _
t * Production samples have not yet implemented latest FCAL
rates
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The “Stepping Cache” solution &¥ CAMBRIDGE

Event reuse random mechanism was disabled (ReadDownScaleFactor=1)

This still doesn’t guarantee every event gets its turn in the central bunch crossing,
because the events get assigned randomly to the bunch crossings in the simulation
“window”

— Event reuse is inevitable (e.g. 100,000 events of 23 collisions per crossing with a
simulation window 31 crossings long, would mean we need to pileup a total of
71.3Million events, but we only have a million available in the dataset)

— One event could, by chance, be selected for the central crossing every time it was
reused

Created code that effectively puts the events on a conveyor belt, which slides
underneath the simulation window. If grid jobs are carefully constructed, events

will all get used approximately the same number of times.
— Doesn’t apply to signal event, but this is ok in the case of empty signal events

Push

Pop B l \ \ J ) } 1‘ events

events Effectively this is a real-time simulation of
the detector — ideal for trigger rate studies

e.g. end of bunch train
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* Solution ensures the minbias events are “proportionally represented” in the pileup
sample

* At the highest luminosities (3E34), it is still possible that a few underlying events
will dominate the rates — so keep an eye out for the unsmooth structure appearing
in rate plots. Rates at these points should not be taken as reliable

| Minbias Event Use Multiplicity (Central Bunch Crossing) |

eventUseMultiplicity
6 Entries 954141
10°E Mean 7.16
E RMS 0.5699
- 99,000 events,
10° — 3 E34
104 =
3
10 : l 1 1 I 1 1 1 I 1 I 1 I 1 1 1 I 1 1 I
0 2 4 6 8 10

Event Use Multiplicity
* Generate enough events in each sample to ensure that 20kHz rate results from no

fewer than 50 events — adequate statistics to use errors of binomial proportion
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* Plot shows contours of Luminosity (z-axis in units of 103*cm=2s1)

* Black dots are samples produced, red x is approximately the situation at the end-

of-2010 proton running (but with different cross-section)
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Tower Level Analysis — some details
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FCAL settings (determined by auto calibration in simulation):

EMB =[1,4,9,5,1] dropBits=4

EMEC =[1,4,9,5,1] dropBits=4
FcalE =[0,3,14,4,0] dropBits=4
Tile =[1,8,15,10,4] dropBits=5
Hec =[0,9,15,11,6] dropBits=5
FcalH =[0,3,11,6,0] dropBits=4

Peakfinder Efficiency (as function of Truth ET) = fraction of Truth ET deposits that
have successful BCID decision (37 bit = 1)

These efficiencies are independent of the noise cut

A Note About “Truth ET”

This is not the same as the calorimeter cell ET. It is approximately the same but for
a further discussion of the definition of this value, see the backup slides



Central Lar Peak Finding Efficiency
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Central LAr = EM Barrel + EMEC + HEC

Central LAr

PeakFinder Efficiency
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EMFCAL
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Understanding the Peakfinder EMFCAL “wiggle” ¢¥ CAMBRIDGE

* Answer lies in the Truth ET distribution for this partition

— TruthET distribution is bunch-structure and noise cut independent, only depends on
number of collisions per bunch (i.e. the bunch-instantaneous luminosity)

EMFCAL - 69 Collisions per bunch

- x10° _ ‘ _
w N 3.2<n|<3.6 (Mean=0.77GeV) |
E B . 3.6<n|<4.0 (Mean=3.8GeV)
5 500 | 4.0<inj<4.4 (Mean=12.1GeV)
25 C 4.4<|n|<4.9 (Mean=11.9GeV)
T S S —

300 E._ .................................................................................................................................................................................
200 =L SE— S S S——
100} f. .. — S S—— S———
0 1 L L | s 1 1 i 1 1 1 l ' L 1 1 I
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Truth E, /GeV

« EMFCAL TruthET is overcalibrated relative to CaloET (see backup slides), so
situation wont be quite this bad if we get the calibration right. But we are already
seeing signs in data that FCAL occupancy is getting high
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Summary of Peakfinder Efficiencies

B8 UNIVERSITY OF
4% CAMBRIDGE

e Position of turn-on curve is dominated by the mean of the energy distribution

* This distribution is determined by the number of collisions per filled bunch

* Bunch structure also influences turn-on curve

— The larger the bunch spacing, the better the peak finding

e Table of 90% peakfinder efficiency TruthET energies (25ns/50ns):

# Collisions Central LAr EMFCAL HadFCAL

5.75
11.5
23
46
69
92
138

1.5 /1.5
1.8 /1.6
2.6 /2.0
4.1 /3.2
5.8 /-
— /5.6
— /7.8

1.6 /1.6
1.7 /1.7
1.7 /1.7
1.7 /1.7
1.8 /-
— /18
— /2.0

Will Buttinger

4.0 /2.6
6.2 /4.5
10.5/7.3

18.0/ 12.5

25.0/ -
--/22.0
— /31

23 /138
3.5 /26
55 /4.3
9.0 /7.2
13.0/ ---

--- /13.0
- /17.8
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Tower Multiplicity and Occupancy &% CAMBRIDGE

* Look at multiplicity and occupancy through the bunch train

— The gap in the plot is the “small” gap between neighbouring trains. The first train is the
train you get after a “large” gap between trains. See the bunch structure slide from

earlier.
| Tower Multiplicity - 1E34 25ns noiseCut=4 | | Tower Occupancy - 1E34 25ns noiseCut=4 |
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Occupancy should be worse for larger bunch spacings
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Baseline Shift in the Bunch Train

A3 UNIVERSITY OF
¥ CAMBRIDGE

Throughout the bunch train, a negative baseline shift is observed across L1Calo

— Biggest in the FCAL

| 23 Collisions, 25ns Bunch Structure |
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Have found that the normalized pulse shapes used in the simulation integrate to

slightly less than zero.

— E.g. EMFCAL integrates to -0.12. The lowest energy LAr shape integrates to -0.83!!!!

This, combined with the average energy deposited per filled bunch, can explain the

observed baseline shift

Will Buttinger
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ROI Analysis — EM Trigger
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Plot includes only NoiseCut=4 samples, with 25ns bunch structure

EM Rate Vs Threshold (25ns bunch structure)
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— Shape of plots are approximately preserved
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— Rates at a fixed threshold appear to scale linearly with the luminosity (will confirm this

in a couple of slides)
Will Buttinger
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Understanding EM Rate vs Threshold
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Focus on just the EM ROI for a moment...

Each underlying minbias event has some (or none) Rol associated to it, which we

will assume are independent of each other.

So each underlying collision event can have an associated “Max Energy ROI”.

If we doubled the number of collisions per BC
and simulated the same number of events,
the number of events in the tail of the
distribution should approximately double

— Small chance that two of the high-energy Max
ROI events go in to the same bunch crossing

As Luminosity increases:

Number of Events

L

T T T T T T T T T

Illll Illllllll IIlIIIlII l]lIIIlII lllllllll Illllllll 1

Approx.
exponential

/ decay

60 80 100
Max EM ROI Energy /GeV

— Events start to migrate to the right of the distribution. The further to the left of the
distribution, the more likely they are to migrate (biggest probability of event combining with

an event containing a higher energy max ROI)

— If the luminosity doubles, then the number of events in the tail of the distribution will

double (to a very good approximation)

At some point along the energy spectrum there is a transition from this linear
behaviour with luminosity to non-linear behaviour.

Will Buttinger
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 The rate at a given threshold is proportional to the integration under the Max ROI
Energy distribution, from the threshold energy up to infinity \

* So doubling the luminosity doubles the integral N

BC
_ pass filled
— i.e. rate at a fixed threshold scales with luminosity Rate = N 3564 x 40 MHz

| EM Rate Vs Luminosity |
x10°

5000 Thresholds (GeV): |

Trigg
T T

o
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Threshold vs Luminosity — EM Trigger
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* For fixed 20kHz rate, plot threshold vs luminosity for the different bunch

structures.

| EM Threshold Vs Lumi for 20kHz rate |

Threshold /GeV
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* Bunch structure does not significantly alter the threshold required for 20kHz EM

rate.

Will Buttinger
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* (Can, to some extent, simulate the intermediate luminosities by throwing away
bunch trains from the end of the structure...

Ty

| EM Threshold Vs Lumi for 20kHz rate |

* Gives 6 additional points per
sample — going down to
approximately half the luminosity
of the sample. See plot ->

Threshold /GeV

* The samples “joining up” is
confirmation that the rate at fixed
threshold is linear with respect to 25
luminosity (when changing the

—®— 25ns Bunch Structure
A

200 & L e e
number of collsions) o E—
 Then repeat all this with NoiseCut ° o8 1 18 2 2 10" cmas

2 and 10....
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Understanding the EM Threshold evolution
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Evolution is approximately logarithmic
In the case where rate vs threshold is

EM Rate Vs Threshold (25ns bunch structure) |

exponentially decaying function, then threshold
evolution at fixed rate is logarithmic (see me for

maths)
The shape of the rate vs threshold plot

influences the evolution of the threshold vs

luminosity

Slightly faster than logarithmic
increase is observed (see plot to
right), due to the slightly faster than
exponential decay of rate vs
threshold.
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EM Trigger — All the noise cuts
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* Noise cuts do not significantly change the threshold-vs-luminosity for the EM

trigger

— Thresholds are already so high that suppressing up to 2.5GeV towers wont reduce EM

ROl with these energies

EM Threshold Vs Lumi for 20kHz rate
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The MC Strikes Back — the MBTime feature
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This only affects the LAr

An event in the underlying minbias sample will contain a list of calorimeter cell hits.
Each hit has a time associated to it, relative to the time of the interaction and adjusted
for distance of the hit from the origin — time of flight

For any given cell, would expect most of the energy to be deposited close to t=0

Deposited hits MBTime=0ff assigns all the hit energy to t=0

T

/’ MBTime=0n assigns hits to the bunch

Event went here crossings they landed in

By default (I believe to speed up processing time), the timing of the hits are ignored in
the simulation, all the times of hits of the minbias event get set to the time of the
centre of the bunch crossing that the event has been assigned to

— E.g. an event that gets put in bunch crossing +1 will have all it’s hit times set to +25ns

But the feature can be enabled so that the hit timings are preserved and the energy
deposits could be spread over more than one bunch crossing

If most of the energy deposit is made close to t=0, this shouldn’t make much of a
difference to the energy of the ROIs

— Maybe occasionally would lose 1GeV to neighbouring bunches
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The effect of the MBTime feature
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* Turns out that enabling the feature to keep this timing significantly changes the
scale (and to some extent, the shape) of the rate-vs-threshold plot at a given

luminosity.

* This significantly alters the the threshold-vs-luminosity plots

EM Threshold Vs Lumi for 20kHz rate
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 To have confidence in the threshold vs luminosity plots, we need to validate the
rate-vs-threshold plot

— The shape of this plot determines the evolution of the threshold vs luminosity, and the
scale of the rate determines the absolute scale on the threshold plot.

* Need to also decide what to do about this MBTime feature
— Should it be on or off? On sounds more “realistic”, but that’s not a sufficient argument

e Test all of this by comparing to real data, but will have to do this at 7TeV
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/TeV — Run 167776
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Online Luminosity (during stable beams) was from 178.9 — 87.5 x103° cm=2s!
— Lumiblocks 124 to 546 inclusive

If we take the cross section given in the mc sample (48mb), this corresponded to
between 2.1 and 1.0 mean collisions per filled bunch (348 filled bunches)

— Cross section estimate by pythia a lower estimate?

The online <p> was 3.3 to 1.6 (will include some amount of diffractive)

Made a minbias data sample by selecting on EF_mbMbts_1 eff, EF_mbLucid eff or

EF_mbZdc_eff

— Counted “good vertices”: number of primary vertices with at least three reconstructed

tracks

Mean of 2.0 collisions per filled bunch seems a reasonable simulation attempt

| Good Vertex Multiplicity |
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e MBTime-On too low (but in the band), MBTime-Off too high (but good at high
threshold?)

— What's really bothering us is that this simulation feature makes such a big difference!
Run 167776, 1.6 < {u) < 3.3
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E E Online (RunQuery)
@ - —_—
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5 _ —
% 10 = -— ——————  mc10, 7TeV, 2 Collisions per bunch, MBTime On
QO - ———
®)] — —_— ——&—— Minbias data
m — + ——
- e ——
- 104 = —— T
= - el —
: —o—++ —
I'u | —_— —— -+
- + i*’hk i
102 T4+ + |
H+ +
10 =
1 I | 1 | 1 I 1 | 1 | I | 1 | | I | 1 | 1 I 1 | 1 | I | | | | I
0 5 10 15 20 25 30

Threshold /GeV

Will Buttinger 29 of ..best not to know




A : : B UNIVERSITY OF
Why does the MBTime feature make a big difference? &% CAMBRIDGE

* Produced sample with MBTime On and MBTime Off for the mc10_7TeV sample:
— Mc10_7TeV.105001.pythia_minbias.merge.HITS.e577 s964 s952/
* Passed the events individually through the “pileup” simulation

— Signal was neutrino events, minbias was actually the “cavern”, but simulated just central
bunch crossing, with cavern collisions = 1 and readdownscale=1

Energy of most energetic ROl in each event

3 —
= -
q’ -
a1 105 L MBTime Off (369,000 events)
p MBTime On (375,000 events)
10% k=R
EventNumbers
3 are coming from
10° & e
minbias sample
EventNumber: 451370
10?2 30
i EventNumber: 129901 EventNumber: 392678
e | | | l
0 20 40 60 80 100 120
Energy /GeV
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HitMaps
* Found the three labeled events in both datasets, look at the hitmaps
EventNumber: 392678
5.6 Iao N b
C C 16
5.4_ 70 -
C - 14
5.2E _lso C 1
5[ _lso C
VIB Off - o : - "
4.8E _lo : s
: e C 6
44F 0 -
4.23 o -
af i
a5 0 - N 0
- 3 18
5.8 -
C - 16
5_5: | 2.5 C ||
C - 14
541 -
C 2 B 12
5.2; - 10
\/ R 0 5: 1.5 - o
asf 1 - 6
4.63 - 4
C 0.5 -
4.4 C 2
25 ~o5 0 o5 —04 oe 0
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Summary of MBTime investigation @¥ CAMBRIDGE

“Disappearing” energy would not be too much of a problem as long as it ALL
reappears in one of the other bunch crossings

— As long as this was a “filled” bunch crossing that will be given a chance to trigger

When only some of the energy disappears, we’ve spread the ROl around, and this
can significantly change the shape and scale of the rate vs threshold plot for the
sample

| am wondering if the deposits in the tilecal are significant here?
— The biggest energy difference was for the biggest tilecal deposit?
Hadronic interactions leading to delayed hits in the LAr?
— Investigations are ongoing, and in communication with LAr simulation expert



EM Trigger
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EM Threshold Vs Lumi for 20kHz rate

Threshold /GeV
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Table of approximate thresholds (in GeV) for 20kHz

L /1034 cm2s! | MBTime On MBTime Off

0.5
1.0
3.0

20
20-25
30-35

30
35-40
45-50
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[Run 167776, 1.6 < (1) < 3.3 |
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|Isolated EM Trigger

| EMI Threshold Vs Lumi for 20kHz rate |

[Run 167776, 1.6 < () < 3.3 |

N 10°
% — % ; — Online (RunQuery)
© 40 Sl T
kol Eé = ?:__ — & Minbias data
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L /103* cm2s! | MBTime On MBTime Off histograms down a
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1.0 19-25 26-31
3.0 25-33 35-40
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TAU Trigger

| TAU Threshold Vs Lumi for 20kHz rate |

| Run 167776, 1.6 < (u) < 3.3 |
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Table of approximate thresholds (in GeV) for 20kHz
0.5 23-27 35-40
1.0 25-30 40-45
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| TAUI Threshold Vs Lumi for 20kHz rate |
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Threshold /GeV
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Table of approximate thresholds (in GeV) for 20kHz

L /1034 cm2s! | MBTime On MBTime Off

0.5 23-27 35-40
1.0 25-30 40-45
3.0 33-37 55-60
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Hadronic isolation only
starts to provide
improvements at highest
luminosities (3E34)
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JET4 Threshold Vs Lumi for 20kHz rate

Threshold /GeV
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| JET8 Threshold Vs Lumi for 20kHz rate

[ Run167776,1.6<(W<3.3 |
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[ JET8 Rate Vs Threshold (25ns bunch structure) |
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10°

e Samples no longer “join up” i
s chang L L

— Rate vs Threshold plot is changing shape R U DU DO DR DO L
Threshold /GeV

— Rate at fixed threshold no longer scales linearly with luminosity at these high thresholds

 These thresholds have entered the “pileup” regime
— Significant production of “fake” ROI passing these thresholds
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JET8 Trigger — simplified (just end points of samples)

JET8 Rate Vs Luminosity RS
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Forward/Backward Jets Trigger
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FJET Rate Vs Luminosity

ke #(25,10)
: 5 : *#(50,10) ¥*¥(50,2)
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Table of approximate thresholds (in GeV) for 20kHz

L /103 cm2s?! | MBTime On MBTime Off

0.5 <70 <70
1.0 <70 70-90
3.0 140-160 190-200

Will Buttinger

Lowest luminosity values
unavailable due to lowest
Forward/backward jet
trigger in menu being a
70GeV threshold
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TE Rate Vs Luminosity

[Run 167776, 1.6 < () < 3.3 |
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Table of approximate thresholds (in GeV) for 20kHz
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Threshold /GeV
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XE Rate Vs Luminosity SRR
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Table of approximate thresholds (in GeV) for 20kHz

L /1034 cm2s! | MBTime On MBTime Off

0.5 40-50 50-60
1.0 70-80 80-90
3.0 150-170 185-200
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A quick look at Efficiency Studies
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* Delta R matching ROl to Truth Electrons
— |Eta] <2.4
— AR<O0.15
* Using a sample of 7TeV Z->ee events (just needed a sample of truth electrons)
— mcl0_7TeV.106046.PythiaZee no_filter.simul.HITS.e574_s1023/
| EM20 Efficiency (|Eta|<2.4) | | Missed Truth Electrons |
g - e L.
Pt R i
“os I ot
061 ............ - -
B T —-— E5533 (NoiseCut=4) | i :-' -
0.4 : SRR USSR SR S— —=— 1E34 (NoiseCut=4) —
*f —+— 3E34 (NoiseCut=4) 4 - .
- : —»— 1E34 (NoiseCut=2) . i .
—— 1E34 (NoiseCut=10) I . e
0 10 20 30 40 50 60 70 80 90 100 -4 -3 -2 -1 0
Electron Truth E_ /GeV
* Efficiency of EM20 trigger relatively unaffected by increasing luminosity and noise
cuts. Missed electrons are going into the overlap region.

A similar analysis is underway with jets (formed from Truth AntiKt4)
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* ROl understood to belong to two regions of the energy spectrum

— The “independent” regime where linear behaviour with respect to luminosity observed
* energies are high enough that virtually all the ROIs are “real” ROIs coming from the underlying
minbias events
* |tisrare to produce significant “fake” ROls are this energy, from overlap of lower energy ROIs

— The “pileup” regime, where non linear behaviour with respect to luminosity is observed

* Energy is low enough that fake ROls are present
* ROls are common enough in pileup that they start to overlap to change energies

* Inthe independent regime, the shape and scale of the rate-vs-threshold plot will
govern the evolution of threshold required for fixed rate as luminosity is increased

 Data vs MC shows we are unable still to reproduce online trigger rates accurately
— Investigating the MBTime feature of LAr
— Would be good to get the pulse shapes right too

* The 2011 data should help test the higher collision rate MC



Summary (2)
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| think we have our best picture yet of what will happen to the existing trigger at
high luminosity. Table below shows range (in limited precision) of thresholds
covered by the variety of noise cuts and 25ns and 50ns bunch structures.

— Have just estimated these from plots — please see relevant slide for actual numbers
Keep in mind that the luminosities given are probably upper estimates

Approximate thresholds required to give Trigger Rate of 20kHz for each Trigger Type

Trigger Type | 0.5 * 103*cm2s? 1.0 * 1034cm2s1 3.0 * 103*cm2s!

20-30
EMI 20-30
TAU 20-40
TAUI 20-40
JET4 25-50
JETS8 25-60

20-40
20-30
25-45
25-45
30-60
30-70

Will Buttinger

30-50
25-45
35-65
35-60
40-85
85-140
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Truth Energy
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A quantity extracted from within the L1Calo simulation that “represents” the
energy deposited in the trigger tower during the central bunch crossing

This is not the same as the energy measured by summing up the Calo Cell energies
of the cells associated to the trigger tower...

The truth energy is the effective energy that the L1Calo simulation is told about, to
use for scaling up normalized pulse shapes in order to simulate the detector
response.

— Can also be thought as an energy that depends on the receiver gains

This study uses an auto-calibration of L1Calo FIR filters and LUT slopes, the truth
energy equals the L1Calo preprocessor output under “ideal conditions” (see next
few slides)

Advantages:

— Calo Energy is dependent on the calorimeter performance, which may change at high
luminosity. Truth Energy is more consistent

— Truth Energy not subject to same mis-calibration problems in fcal as calo cell energy is...
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* Flooded simulation with perfectly timed-in hits in a custom “Calibration mode”,
with a simulation window of only one bunch crossing

| EM Barrel and Barrel End | | EM Barrel, Barrel End, EMEC and HEC |
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Q goF Q goF
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— = £ 80_
g - § -
S 70F F 70
60 . 60
50F 50
40" 40fF
30F 30F
20F 20F
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onEJfT......... Looteedeofondeogiogongeogedigiog g pogeeteege gy gy b g 0:|'1v1|1|1|1||1|1||||1|1|111|| 1
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Truth E_ /GeV Calo Cell E; /GeV
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* Flooded simulation with perfectly timed-in hits in a custom “Calibration mode”,
with a simulation window of only one bunch crossing

> F > -
Q = [}] —
9 goF Q goF
uf 80E W o
— = £ 80 -
g F *é =
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60 60
50F 50F
40F 40F
30F 30F
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0 10 20 30 40 50 60 70 80 90 % 10 20 30 40 50 60 70 80 90
Truth E, /GeV Calo Cell E, /GeV
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Truth Energy — EMFCAL
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Flooded simulation with perfectly timed-in hits in a custom “Calibration mode”,
with a simulation window of only one bunch crossing
3 F " e
2 9ok ol Q goF
4 6oE o W E .
g -~ B
P 70; el g 70; A
60F o o 60F
50F o 50F
40- 7 - 40
30; J"fﬁ 30§
— |J\ I
20§ - 200
105 105
% 1072030805060~ “70™ 8050~ % 1020 30 40 50 60

Truth E, /GeV
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olI180IlII9°IIlI
Calo Cell E; /GeV
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Truth Energy — HadFCAL
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Flooded simulation with perfectly timed-in hits in a custom “Calibration mode”,
with a simulation window of only one bunch crossing
% E .f"." % E
© g9 - S 90
u E o W F
5 80F A £ 80p
3 - N 2 E
2 70 (1=
60F Ll 60F
- ot =
50F e 50
40F i 40F
= .-'Sﬁr E
30F e 30F
20F ﬂ 20F
10? ,,\."‘!" 10;
01020 30" 40~ 50”60”7050 90" % %0 200 30 40 50 60 70 _ 80 90
Truth E_ /GeV Calo Cell E; /GeV

HadFCAL is only place where Truth Energy # Tower Energy (in calibration mode)

— Due to pulse shape simulation using two different pulses for FCAL2 and FCAL3, but
L1Calo preprocessor auto-configuration uses only one of the pulses
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Old comparison between MSU and Cambridge samples

* The most significant disagreements appear after curves become unsmooth
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Will Buttinger 52 of ..best not to know




