Phase 1 L1Calo Upgrade Simulation Status

James T. Linnemann
For MSU group (J. Kraus, J. Koll, JTL)
Michigan State University
L1Calo Meeting, Cambridge March 23, 2011

Cross Checks: is MC correct now?

Production MC vs. MSU samples - look the same
Yet another bug: FCAL (Buttinger: Feb)
Mean and Variance Linearity? Mostly reasonable (updated thru 2E34)
Understand MET φ distribution - displaced vertex (+ old bugs)

Distribution of \# pileup events: new samples: really looks Poisson for 0.5 to 2.0 E34

Rate calculations: Cambridge vs. MSU x2 differences
Predict single bunch pileup? Not too bad
Compare single bunch pileup vs bunch train pileup
MC vs 1999, 2002 MC -- in progress
2 E32 data vs. MC (correct bunch train: Buttinger talk)
New trigger list: appropriate thresholds needed

Jet,MET comparison w/ 2002 TDR MC: need better statistics

Rates for $2 \mathrm{j}>50$, MET >20 :

Old MC (TDR) . 5 kHz
~Current MC: 1-3 kHz (w/o Fcal fix)

- Testing the effects of removing cavern background, beam halo, and beam gas from pileup simulation.
- Multiplicities and MET are higher without backgrounds?
- Otherwise little difference.

Std: no cavern bkg's etc; compare to MSU samples with all bkgs

MET Phi: Understood now

Sensitive test of MC Significant eta dependence thanks MET group! MC: due to offset vertex
was 3mm: now ~0mm
No crossing angle in MC Spikiness at low MET:

1 GeV quantization in METx, y
~ gone for MET > 10

Long list of tests at MSU http：／／hep．pa．msu．edu／people／kraus／task list．htm｜

x.
status－running with full pileup
－Finish investigating beam crossing angle．－Kraus
盉．have confirmed no crossing angle at generation
x．
checking for Lorentz boost to create crossing angle during detector simulation．Conditions tag indicate no crossing angle
－run a sample with W．Buttingers FCal bug fix，check its effect on distributions Kraus／Koll
家。
status－samples made
－Make plots of our trigger rates vs rates predicted in previous documentation

status－J．Kraus has old plots，need to spend time estimating positions of points and adding to more recent plots

Other Parameterization Techniques
－Toy MC with Long＇s \＆eta function included－Kraus
x
status－Finished，shown in February
－Do pileup study using single event bunch train－Kraus

交。
status－Events have been generated and ntuplized－single events still need to be combined

Bug fix cross cross checks
Tests 1－4 need to be done with both corrected and old buggy MC in order to understand whether they are sensitive enough to have detected our problems．
1．Compare single bunch crossing（no bunch train）single event with pileup under same conditions．This should be simple addition（see below）．Ideally，wou electronics noise probably significant，since tuned so as to equal pileup＂noise＂at 1E34．－Kraus
\cdots
2．Algebraic test to the extent that pileup is a simple addition，Linnemann did calculations that found that both mean and variance of Et in a trigger object sh Kraus 3
3．Compare this＂no bunch train＂pileup MC with full bunch train simulation and see whether differences appear to be plausible．Kraus \oiiint Done and shown on Oct 6， 2010
3

[^0]
In-time only pileup?

Attractive: higher lumi possible
But: rates change by x2 must compensate for baseline
currently attempting to parameterize Insufficient info in standard .esd know how to make custom .esd

Rate Comparison Studies

Discrepancies (x2) in rate evaluation from
.rdo Cambridge
.esd MSU
Idea: re-use of minbias drove .rdo vs .esd rate differences?
Readdown Scale Factor:
re-use of minbias events in pileup simulation
p (drop event after use) $=1 /$ RDSF (150 default)
RDSF=1: run out of statistics at hi Pt
Not clear the readdown scale factor dominates
Either at . 5 or 2 E34
see following plots...

Rate Calculation checks (cf. last week)

.rdo and .esd gives x2 difference?
little discrepancy in minbias re-use choice for 2E34
but more at .5E34 ? (geom/conditions tags : release 15 vs. 16?) maybe more for em than jets also?

Readdown factor Comparison: EM same until to 16 GeV

Rate for 1 EM ET > X, no isolation cut

EM Rates: 15 vs. 16

Rate for 1 EM ET > X, no isolation cut

James Linnemann, MSU

Readdown factor Comparison: Jets same out to 20 GeV

Jet Rates: 15 vs. 16 (Jets)

Rate for 1 Jet 8×8 with ET $>$ X

Update on ROI multiplicities

Minbias only so far need Jxx and physics samples and verify against data with appropriate thresholds
Lower than old bugged MC by a lot
4 is max seen in minbias: EM or J

ROI Multiplicity: CPM (minbias)

JEM ROI Multiplicity (minbias)

Rates Update: Version 16

Rates from Minbias pileup
no cavern, beam halo, beam-gas,
Samples:
2E34 from standard production
All bugfixes except FCAL
Lower lumi samples made at MSU
All current bugfixes

EM Rate vs. Lumi v16

Rate for 1 EM ET $>\mathrm{X}$, no isolation cut

Jet Rate vs. Lumi v16

Rate for 1 Jet 8x8 with ET > X

For more detail...

Linearity vs Lumi: buggy, fixed, in-time only MC
24 vars (Et, Nroi) $\times\{$ mean, $s d\} \times 3$ MC versions compare good and bad MC: what caught by nonlinearity?

Lumi dependence (minbias only) .5, 1, 2 E34
~ 75 plots: Nroi, Pt dists, MET, etc; (v15 bugfix and v16)
http://hep.pa.msu.edu/people/koll/Atlas/Luminosity Comparison 1.0/
Compare minbias reuse: RDSF @ .5E34
same 75 plots: (v15 bugfix, RDSF=150) vs. (v16, RDSF =40)
http://hep.pa.msu.edu/people/koll/Atlas/Readdown Comparison 1.0/

Algorithms to trigger menu...

In progress: Patrick True \& Jim Kraus First candidates:
Em/j overlap removal
Jet delta phi
Jet delta eta

Always in Progress

Ttbar sample not studied yet
5E34: can privately make .rdo but not .esd
rates $x 2$ different (see above)
would need certified 64b .exe
can't address enough VM in 32b

Summary

Much verification and improved understanding
Still some things in progress...
Waiting for more production samples Good enough for TP?

Backup

Recent Meetings L1Calo Sim

Dec 17, 2010
http://indico.cern.ch/conferenceDisplay.py?confld=116858
Feb 16, 2011
http://indico.cern.ch/conferenceDisplay.py?confld=126214
March 16, 2011 last week
https://indico.cern.ch/conferenceDisplay.py?confld=131565

Rates EM, 15 vs 16, 1E34

EM Rate for Various Lumi (15 vs. 16)

Rate for 1 EM ET > X, no isolation cut

Jet Rates: 15 vs 16, 1E34

Rate for 1 Jet 8×8 with ET > X

Jet Rate for various Lumi (15 vs. 16)

Rate for 1 Jet 8×8 with ET $>$ X

Readdown and 15 vs. 16

Rate for 1 EM ET > X, no isolation cut

[^0]: 4．Data test：necessary but not sufficient that MC describe low luminosity data．This is tricky as bunch structure of data is the more dense structure expecte Done and shown

