John Morris QMUL

Other Business D3PD FCAL23

Noise Cuts
Motivation
Variations
Caveats
EM
Tau
Jet

XE & XS Signal

Predictions

. . .

Noise Cuts

John Morris Queen Mary University of London Cambridge Meeting 2011 $25^{\rm th}$ March 2011 Noise Cut Motivation Variations Caveats EM

Jet XE XS

XE & XS Signal

Prediction

- Other business:
 - D3PD Production
 - FCAL23 Mapping
- Noise cuts
 - Re-running L1Calo
 - Efficiency and rates
- Conclusions

Canalusian

D3PD Production

p449 panda tag

- This tag is running automatically for all stable beam runs:
 - DESD_CALJET
 - DESDM_EGAMMA
 - DESD_MBIAS
- Hope to keep this tag for a long time
- Behind the scenes changes:
 - Up-to-date interface with Reco_trf.py and ProdSys
 - Disabled Towers has replaced Dead Channels
 - TT Cells $E(E_{\rm T})$ by layer and receiver
 - LAr and Tile problematic HV info

Other Business D3PD FCAL23

Noise Cut Motivation Variations Caveats EM Tau

Jet XE XS XE & XS Signal

Rates

Predictions

Conclusion

Mapping of FCAL23 Trigger Towers

- FCAL23 trigger towers have either 16,8 or 7 Calo Cells
- FCAL23 trigger towers have 2 receivers
- Trigger tower ↔ Calo Cell mapping is known
- $\bullet \ \, \mathsf{Trigger} \ \mathsf{tower} \leftrightarrow \mathsf{receiver} \ \mathsf{mapping} \ \mathsf{is} \ \mathsf{known}$
- Receiver ↔ Calo Cell mapping is unknown
 - · Documentation doesn't easily correspond to Athena
 - We have educated guesses but I don't trust them
- Technical stop plans:
 - Thorough systematic study with only 1 cell and 1 receiver per TT enabled per run. Total of 32 runs.
 - Even if I trusted the docs I would still want the tests
 - Once this is solved it's solved until the upgrade

Conclusion

Noise cuts - Motivation

Optimize the L1Calo noise cuts

- Now using the new LUT (Look Up Table) strategy
 - Reduces rounding uncertainties
 - Noise cut accounts for slope, so cut is same for each tower
 - Reduces LUT "droop" at low E_{T}
- Noise cut of 4000 for each tower Can we optimize this?
- Re-run L1Calo with different noise cuts (Alan Watson)
 - Can we improve the efficiencies?
 - Can we reduce the overall rate?
- Need to consider : EM, Taus, Jets, XE, XS
- We can't optimize one at the expense of another

Caveat EM Tau Jet

XE & XS Signal

Predictions

Conclusion

Datasets and Variations

Datasets and setup

- Run 177965, DESD_MBIAS, Athena 16.6.2.5
- Sundays overnight run
- No magnetic field Does not effect L1Calo
- Event selection : Require mbts trigger

Noise cuts considered

- 3500, 3600, 3700, 3800, 3900, 4000(Nominal), 4100, 4200
- 4300, 4400, 4500, 4600, 4700, 4800, 4900, 5000
- Efficiency and rates studies for EM, Taus, Jets, XE, XS

Other Business D3PD

Noise Cut Motivation Variations

Caveats EM Tau

Jet XE XS

XE & XS Signal

Predictions

Conclusions

Important caveats

Important caveats - Efficiency

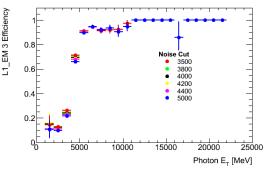
- Do not consider the efficiencies to be "good"
- I'm certain I'm not doing this 100% correct
- This study is not about extracting exact efficiencies
- It is designed to see the effect of the L1Calo noise cut
- Look at the difference between efficiencies, not the efficiencies themselves

Important caveats - Rates

- Rates are normalised to atlas-runquery numbers from web
- Run 177965 LB 142 2nd LB with high TAV rates
 - TAV = Trigger After Veto
- Using TBP (Trigger Before Prescale) rates
- All offline events in the run included in calculation
 - Done to maximize statistics
 - Does not account for decreasing Inst. Lumi. over fill
 - Does not account for decreasing pile-up (XE)

Other Business D3PD FCAL23

Motivation Variations


Caveats
EM
Tau
Jet
XE
XS

XE & XS Signal

Predictions

Conclusions

L1_EM 3 : efficiency and rates

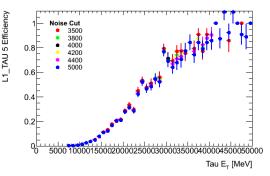
Noise Cut	Rate (KHz)
3500	142.5
3600	141.2
3700	139.7
3800	138.1
3900	136.0
4000	134.3
4100	133.1
4200	131.8
4300	130.8
4400	129.8
4500	128.9
4600	128.1
4700	127.3
4800	126.4
4900	125.3
5000	124.0

Photons

- Please do not consider this a good quality efficiency analysis
 - ullet $|\eta| < 2.47$ excluding crack region. Author == photon
- ullet $\Delta R < 0.15$ between photon and Rol
- Noise cut does not significantly effect efficiency
- Turn-on is slightly faster for lower noise cut
- ≥ 5 GeV there is not much difference
- Rate $\propto \frac{1}{\text{Noise cut}}$

Other Business D3PD FCAL23

Noise Cut Motivation Variations Caveats EM


Tau Jet XE

XE & XS Signal

Predictions

Conclusion

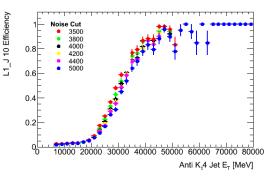
L1_TAU 5 : efficiency and rates

KHz)
8
3
8
3
8
1
7
2
0
8
5
3
1
8
5
1

Taus

- Please do not consider this a good quality efficiency analysis
- No magnetic field this will effect Offline Tau reconstruction
- $|\eta| < 2.47$ excluding crack
- ullet $\Delta R < 0.15$ between tau and Rol
- Noise cut does not effect efficiency
- Rate ∝ 1/Noise cut

Other Business D3PD FCAL23


Noise Cuts
Motivation
Variations
Caveats
EM
Tau
Jet
XE
XS

XE & XS Signal

Predictions

Conclusion

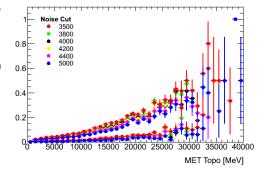
L1_J 10 : efficiency and rates

Noise Cut	Rate (KHz)
3500	26.5
3600	25.5
3700	24.6
3800	23.2
3900	22.0
4000	21.0
4100	20.4
4200	19.6
4300	18.7
4400	18.1
4500	17.7
4600	17.1
4700	16.7
4800	16.2
4900	15.7
5000	15.3

Jets

- Please do not consider this a good quality efficiency analysis
- Only keep good jets
- $\Delta R < 0.3$ between photon and RoI
- Noise cut does not significantly effect efficiency
- Turn-on slightly is faster for lower noise cut
- Rate ∝ ¹/_{Noise cut}

Other Business D3PD FCAL23 -1 XE 10 Efficiency


Noise Cut
Motivation
Variations
Caveats
EM
Tau
Jet
XE

XE & XS Signal Rates

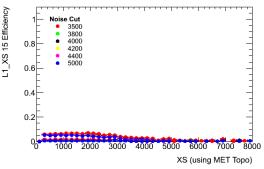
Predictions

Conclusions

L1_XE 10 : efficiency and rates

Noise Cut	Rate (KHz)
3500	137.5(30.8)
3600	131.9(27.9)
3700	128.6(25.4)
3800	123.5(23.4)
3900	117.8(21.3)
4000	114.0(19.8)
4100	111.4(18.6)
4200	109.0(18.1)
4300	104.8(17.4)
4400	101.2(16.9)
4500	99.4(16.2)
4600	97.3(15.8)
4700	96.1(15.5)
4800	93.1(14.9)
4900	90.4(14.6)
5000	88.9(13.9)

Missing E_T : XE


- We want this to be low as this is fake-MET
- Top set of plots FCAL included in XE default setting
- Bottom set of plots FCAL removed from XE
- Noise cut does not significantly effect efficiency
- Rates shown with(without) FCAL
- Rate $\propto \frac{1}{\text{Noise cut}}$

Other Business D3PD FCAL23

Noise Cuts
Motivation
Variations
Caveats
EM
Tau
Jet
XE
XS

XE & XS Signal Rates

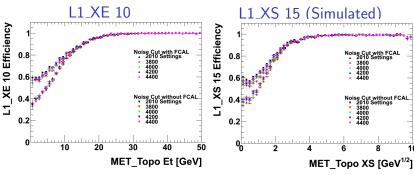
XS 15: efficiency and rates

Noise Cut	Rate (KHz)
3500	146.7(90.7)
3600	142.5(84.0)
3700	140.9(78.3)
3800	137.3(73.6)
3900	132.6(69.0)
4000	129.5(64.8)
4100	127.7(61.6)
4200	125.6(60.3)
4300	120.8(58.1)
4400	117.5(56.6)
4500	115.7(54.4)
4600	113.7(53.1)
4700	112.4(51.9)
4800	109.4(49.6)
4900	106.5(48.9)
5000	105.3(46.3)

Missing $E_{\rm T}$ Significance : XS

- We want this to be low as this is fake-MET
- Efficiency is lower than XE this is want we want
- Top set of plots FCAL included in XE default setting
- Bottom set of plots FCAL removed from XE
- Noise cut does not significantly effect efficiency
- Rates shown with(without) FCAL
- Rate $\propto \frac{1}{\text{Noise cut}}$

John Morris QMUL


Other Business D3PD FCAL23

Noise Cuts
Motivation
Variations
Caveats
EM
Tau
Jet
XE
XS
XE & XS Signal

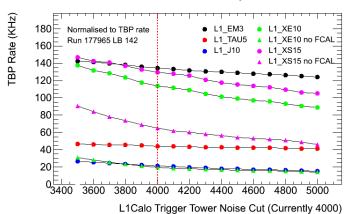
Rates

C

Looking at 2010 W ightarrow e u data

XE and XS are very efficient for signal

- Run 167776, DESD_SGLEL, Loose $W \rightarrow e \nu$ selection
- XE and XS perform very well
- XE and XS turn-on faster if FCAL is removed
- With or without FCAL rate is the same for XE and XS


John Morris QMUL

Other Business D3PD FCAL23

Motivation
Variations
Caveats
EM
Tau
Jet
XE
XS
XE & XS Signal

Predictions

Rate prediction

All rates normalised to Run 177165 TBP at LB 142

- I guess we need to pick a noise cut
- 4000 looks OK to me. Discuss. Whats your opinion?
- Where do we stand on removing FCAL from XE and XS?

John Morris QMUL

Other Business D3PD FCAL23

Noise Cut Motivation Variations Caveats EM Tau

Jet XE XS XE & XS Signal

Rates

Predictions

Conclusions

Conclusions

Noise cut

- Noise cut does not have significant effect on efficiencies
 - Would get better turn-ons with a better energy calibration
- Noise cut does effect rate
- Need to choose a noise cut
 - No obvious winner
 - 4000 looks OK
 - Need to consult with rates and menu group

FCAL in XE and XS

- Removing FCAL from XE and XS \rightarrow drop in rate
- Signal appears to be unaffected
- Needs consultation with physics groups
- I have an AlgTool which people can use to see the effect on their analysis