

ATLAS L1Calo Trigger Joint Meeting Emmanuel College, Cambridge, UK March 23 - 25, 2011

Trigger Operations

Martin Wessels

Kirchhoff Institute for Physics
University of Heidelberg

Introduction

- * What it is and who is who
- ★ Sneak preview of 2011 running

Thanks to B. Petersen and F. Winklmeier for material

ATLAS Trigger – Who Is Who

Trigger Coordination
Srini Rajagopalan, David Strom

Trigger/DAQ System Chris Bee, David Francis

Level-1 Trigger

Domenico Della Volpe

Trigger Monitoring
Martin zur Nedden, Valeria Bartsch

Menus & Performance Olya Igonkina, Brian Petersen Trigger Core Software Tomasz Bold, Joerg Stelzer

Trigger Operation
Alessandro Cerri, Martin Wessels

Software Releases & Validation Simon George, David Strom

Trigger Signature Groups
MinBias, Jet, Tau, MissingEt, Muon,
B-Physics, B-Jets, Electron/Photon

Trigger Detector Software
Online beam spot, calorimeter trigger,
inner detector trigger, muon trigger,
calibration, cosmic ray

TrigOps Coordination 2 people

Let's quickly continue ...

Trigger Operations Mandate

- Responsible for an efficient online execution of agreed upon trigger
- Responsible for appropriate scheduling for various trigger requests and changes
- Liaise with Run Coordination
- Attend Daily run meetings representing the trigger activities
- Day to day operational duties, including:
 - Deployment of agreed triggers and pre-scale sets
 - Take any operational decisions concerning modifications of algorithms and menus that require immediate action (typically < 24 h)
 - Ensure proper monitoring of online triggers and attend to any problems (directly or through relevant experts as the case requires)
 - Certify that the menus are tested on CAF before their online deployment
 - Ensure that the debug streams are processed appropriately
 - Ensure that the initial data quality flags for triggers are set and reported appropriately at the
 Data Quality meeting working closely with the monitoring group
- Provide weekly reports at the Trigger General meetings
- Communicate regularly with menu & performance conveners and provide operational feedback, in particular on actions that have been taken

TrigOps Coordination 2 people

- Responsible for efficient trigger online operation at P1
- Day to day planning and trigger operation at P1
- Liaise with Run Coordination and detector systems
- Represent trigger in daily run meetings
- Responsible for appropriate scheduling for various trigger requests and changes

- General executive in P1, main contact for P1 shifter
- First level troubleshooting, implement emergency fixes
- Deploys new trigger software and menus
- 24/7 trigger monitoring
- Demanding job, presence in P1 often required

- Represents various L1 subsystems
- L1 contact for shifters and trigger experts
- Data quality contact for L1

- Prepares trigger menus and prescales for P1
- Close collaboration with Online On-Call
- Similar demanding job, presence in P1 often required
- Prepares menus and prescales for CAF processing

- Trigger menus and prescales are coming from menu & performance coordination
- Implementation at P1 approved and scheduled by trigger operation coordination

- Reviews, collects and tracks requested software changes for P1 and CAF cache
- Continuous checks on nightly builds
- Contact to offline release builders
- New software validated by HLT Integration to ensure suitability for online running

- Main contact for offline shifter
- Collects and reports trigger DQ status
- Runs CAF processing and collect sign-offs

Operating & Changing the Trigger

Well defined procedure for trigger updates at Point 1 ensuring smooth ATLAS operation

- New tags being requested for P1 at atlas-trig-relcord@cern.ch
- Added to CAFHLT nightly after check by release expert,
- Nightly results validated
 - New CAFHLT cache build when sufficient changes
 - 5. Offline expert starts CAF reprocessing
 - 6. Signature experts on-call signs-off
 - 7. Operations signs-off on deployment
 - 8. P1HLT cache build and installed at P1
 - 9. Final test on preseries
 - 10. Switch P1 between fills

Full update cycle: 1-2 days

L1 Contact Points

as seen by a former L1 On-Call person

9h15 meeting

- Daily planning meeting, L1 represented by L1 On-Call
- In praxis: "Is L1 happy?" "Yes" (L1 On-Call very rarely called)
- Often boring for L1 as HLT changes much more frequent
- Ok for recap of past problems, difficult when it comes to (short-term) planning as oncall person usually not involved in work of "other" L1 systems
- Planning "detoured" via daily 9h30 run meeting (L1 status more like sub-detector rather than trigger)
- Official dataflow via trigger management mailing list in addition

Weekly General Trigger Meeting

- Important meeting for trigger information exchange, dominated by HLT and trigger signature activities (talking about trigger chains)
- L1 underrepresented, but naturally more hardware oriented/interested
- Automatic entrance via more involvement in trigger signature groups?
- Weekly L1 on-call summary talk: Good, but can we make more out of it?

Conclusions – Part A

- Trigger Operation responsible for efficient day-to-day online operation and scheduling of the ATLAS trigger
- More than 20 people (experts/shifters) involved 24/7 to ensure this (still)
- Chairs/represented in 3 daily meetings (9h15, 9h30, 15h operation meetings) and 2 weekly meetings (Trigger General and Weekly Run Meeting)

Trigger Menu 2011

Trigger menu design

- Assume peak luminosity will be $5 \cdot 10^{32} 2 \cdot 10^{33}$ cm⁻² s⁻¹
- Use L=10³³ cm⁻² s⁻¹ as *baseline* with output bandwidth of 200 Hz
- What is the physics gain with 400 Hz output bandwidth?

Baseline menu

- Collected inputs from physics and trigger groups at Amsterdam trigger workshop and follow-up meetings
- Trigger rates have been extrapolated to L=10³³ cm⁻² s⁻¹ taking into account expected trigger improvements
- Based on physics requirements and DAQ limitations on triggers, a baseline menu for L=10³³ has been designed

Results presented at the ...

- <u>Joint Physics-Trigger Meeting (Feb 1st)</u>: *Triggering at 10*³³
- ATL-COM-DAQ-2011-007: Proposal and Motivations for 2011 Trigger Menu

L2 ROS Request Rates 2010

(ROSes roughly ordered from A to C side)

Preliminary L2 ROS Request Rate Predictions

For more details on this method: http://indico.cern.ch/event/127276

Trigger Menu Design

Example: Trigger rates for 20 GeV electron trigger

→ 99% efficiency plateau reached at E_t ~ 25 GeV

L1 sets minimal possible E_T threshold

L1_EM* rates at 1033 cm2s-1 as a function of threshold

Adjust EF rate with tightness and E_T cut

EF electron rates at 10³³ cm⁻²s⁻¹ as a function of threshold

2011 Baseline Menu @ 10³³

Main unprescaled primary triggers

Trigger	L1 Item	L1 Rate	L2 Rate	EF Rate(p	eak)
mu20	MU10	6000	120	25	can,
2mu10	2MU0	2000	50	3	Similar sized list of
2mu4_Jpsi/Upsilon/B mumu	2MU0	2000	40	15	
e20_medium1	EM14	7500	400	20	more specialized
2e12_medium	2EM7	4000	30	0.5	triggers for very
e10_medium_mu6	EM5_MUO	1000	20	3.5	high-p _T physics
		7500	5		or other "exotic"
g80_loose	EM14	700		1 1.5	physics (~30 Hz)
2g20_loose tau100_medium	2EM14		50 60	3	About 25 Hz of
_	TAU30	1200			About 35 Hz of
2tau29_medium1	2TAU11	2500	30	4	support/monitoring
tau29_medium_xs80	TAU11_XS35	4000	300	4	triggers
tau29_loose_xs45_3J10	TAU11_XS15_3J10	1000	100	8	
tau16_loose_e15_tight	2TAU6_EM10	6000	200	3	
tau16_loose_mu15	TAU6_MU0	500	15	5	
j75_xe55	J50_XE20	500	400	7	
ht400	3J10_J50	200	150	4	
j250	J75	250	240	4	
fj100	FJ50	50	40	4	
b10_4jXX	4J10_JE100	300	100	4	
b10_JE140	JE140	1000	50	4	
2b10_L13J10	3J10	1200	60	5	
Total (includes other triggers)		43000	3400	230	
Maximum allowed		75000	5000	600	200

2011 Baseline Menu @ 10³³

Main unprescaled primary triggers

Trigger	L1 Item	L1 Rate	L2 Rate	EF Rate (pe	ak)
mu20	MU10	6000	120	25	
2mu10	2MU0	2000	50	3	Similar sized list of
2mu4_Jpsi/Upsilon/B mumu	2MU0	2000	40	15	more specialized
e20_medium1	EM14	7500	400	20	triggers for very
2e12_medium	2EM7	4000	30	0.5	high-p _T physics
e10_medium_mu6	EM5_MUO	1000	20	3.5	or other "exotic"
g80_loose	EM14	7500	5	1	physics (~30 Hz)
2g20_loose	2EM14	700	50	1.5	, , ,
tau100_medium	TAU30	1200	60	3	About 35 Hz of
2tau29_medium1	2TAU11	2500	30	4	support/monitoring
tau29_medium_xs80	TAU11_XS35	4000	300	4	triggers
tau29_loose_xs45_3J10	TAU11_XS15_3J10	1000	100	8	
tau16_loose_e15_tight	2TAU6_EM10	6000	200	3	
tau16_loose_mu15	TAU6_MU0	500	15	5	
j75_xe55	J50_XE20	500	400	7	
ht400	3J10_J50	200	150	4	
fj ² Good safety mar	gin for L1/L2	Ve	ry clos	e to 200	Hz EF limit.
b10_4jXX	4J10_JE100	300	100	4	
b10_JE140	JE140	1000	50	4	
2b10_L13J10	3J10	1200	60		EF (avg)
Total (includes other triggers)		43000	3400	230	185
Maximum allowed		75000	5000	600	200

Higher EF Output Rate?

- Beyond 10³³, will have to cut significantly into physics (e.g. 25 GeV leptons) without more dedicated (analysis specific) triggers
- No room for physics triggers that haven't been thought of yet
- Almost no safety margin on EF output rate
- Trigger and physics community have been asked to provide feedback on physics gain with increased EF rate of 300 – 400 Hz
- Two lists of priority triggers compiled (priority 1 and 2)
- Each category adds about 100 Hz on top of 200 Hz baseline menu

Trigger categories and peak rate @ 10³³

Rate Evolution and Bandwidth Limits

Rate Evolution and Bandwidth Limits

- If having to stay below 400 Hz will have to drop extra triggers earlier, raise thresholds and tighten selections without prior testing with new high pile-up data
- → Major reoptimisation of menu needed if luminosity exceeds 10³³ cm⁻² s⁻¹ level, work starting now

Prescale Strategy

- 2010 strategy best with very loose primary triggers and rapidly increasing luminosity
- Loose triggers enabled during fill in the end mostly not used in physics analysis
- 2011 allows higher peak rate of primary items
- End-of-fill triggers which require low luminosity only, prefer low pile-up conditions or require large L1 or L2 resources (e.g. high track multiplicity triggers)

Conclusions & Outlook

- Trigger Operation responsible for efficient day-to-day online operation and scheduling of the ATLAS trigger
- More than 20 people (experts/shifters) involved 24/7 to ensure this (still)
- Chairs/represented in 3 daily meetings (9h15, 9h30, 15h operation meetings) and 2 weekly meetings (Trigger General and Weekly Run Meeting)
- A baseline 10³³ trigger menu is available with an EF rate close to 200 Hz
- Various areas can be improved with additional EF output rate, a prioritised list of additional physics triggers available
- Major reoptimisation of menu needed if having to stay at 200 Hz for luminosity beyond 10³³ cm⁻² s⁻¹
- Online recommissioning of the trigger started successfully two weeks ago
- Revise trigger menu during technical stop based on experience from initial running period, plan to freeze menu shortly after