Jet flavor identification using Graph Neural Networks in CMS

Loukas Gouskos (CERN) on behalf of the CMS Collaboration

> CERN-Data Science seminar Oct 5th, 2022

Jet identification ("tagging")

- Jet tagging: A topic of high interest in both TH and EXP communities
 - More than 30 years at colliders
 - b-jets at LEP and Tevatron; W, Z, H,.. at the LHC
- Recently: much more powerful algorithms w/ multi-object tagging capabilities
 - opened-up unchartered territory

Setting the scene

- Jets play a crucial role in the LHC physics program
 - both Standard Model (SM) and beyond (BSM)

• Key for success: Well calibrated jets & constantly improving our "JetToolbox"

 particularly important now that LHC integrated luminosity increases only ~linearly with time & do not expect big jumps in collision energy

Setting the scene (II)

Often exceeding expectations:

In conclusion, the extraction of a signal from $H \rightarrow b\bar{b}$ decays in the WH channel will be very difficult at the LHC, even under the most optimistic assumptions for the *b*-tagging performance and calibration of the shape and magnitude of the various background sources from the data itself.

Setting the scene (II)

Often exceeding expectations:

In conclusion, the extraction of a signal from $H \rightarrow b\overline{b}$ decays in the WH channel will be very difficult at the LHC, even under the most optimistic assumptions for the *b*-tagging performance and calibration of the shape and magnitude of the various background sources from the data itself.

Jet identification: Basics and brief review

Today: focus on tools developed for Large-*R* jet

Low boost: unmerged decay products → decay products resolved as distinct small-*R* jets

Large boost:

Decay products "merged" in to a single large-*R* jet

Basics for jet identification

Substructure

Flavor

- Explore the energy distribution inside jet

- Exploit large lifetime of b/c hadrons
- Presence of displaced tracks & sec. vertices

In the beginning unclear what correlations existed among these

Review a decade [in CMS]

Enormous progress since the LHC start

Intermezzo: CMS event reconstruction

- CMS event reconstruction uses the **Particle Flow (PF)** algorithm
 - Combines information from all subdetectors
 - Output: mutually exclusive list of particles
 - Then: build higher-level objects (jets, ME_T,..)

Significant improvement in object performance wrt traditional approaches

Exploiting more of CMS potential

• A Jet in theory:

- A spray of particles produced by the hadronization of quarks and gluons
- Experimentally:
 - A cone of reconstructed particles in the detector

Towards particle-based jet tagging

CMS PF algo: Rich set of info / particle

Ideal case for Deep Learning (DL) based algorithms with low-level inputs

Jet representation

- Key ingredient for powerful DL-based algorithms
- Jet as an image:
 - Treat detector (i.e. calorimeters) as a camera
 & the jet as an image
 - Apply techniques from image recognition (CNN-2D)
 - **<u>But</u>**: jet images are very sparse
 - <u>Also:</u> CMS very heterogeneous/complex
 - difficult to include info from other subdetectors [eg., tracker]

Jet representation

- Key ingredient for powerful DL-based algorithms
- Jet as an **image**:
 - Treat detector (i.e. calorimeters) as a camera
 & the jet as an image
 - Apply techniques from image recognition (CNN-2D)
 - **<u>But</u>**: jet images are very sparse
 - <u>Also:</u> CMS very heterogeneous/complex
 - difficult to include info from other subdetectors [eg., tracker]
- Jet as particle sequence:
 - Jet as a sequence of constituent particles
 - Apply techniques from <u>natural language</u> processing [e.g. CNN-1D, RNNs ..]

Jet representation

- Key ingredient for powerful DL-based algorithms
- Jet as an **image**:
 - Treat detector (i.e. calorimeters) as a camera
 & the jet as an image
 - Apply techniques from image recognition (CNN-2D)
 - **<u>But</u>**: jet images are very sparse
 - <u>Also:</u> CMS very heterogeneous/complex
 - difficult to include info from other subdetectors [eg., tracker]
- Jet as particle sequence:
 - Jet as a sequence of constituent particles
 - Apply techniques from <u>natural language</u> processing [e.g. CNN-1D, RNNs ..]
 - Inclusion of more information straight forward
 - Explore more of the CMS detector & CMS event reconstruction potential

Particle-based jet tagging: DeepAK8

CMS

- Advanced DL-based boosted jet tagger [using particle sequences]
 - multi-class classifier for top, W, Z, Higgs, and QCD jets
 - inspired by ResNeXt50 [К. Не et al.]
 - Simultaneously exploit <u>substructure</u> and <u>flavor</u> information

<u>NeurIPS 2017</u> <u>CMS-DP-2017-049</u> JINST 15 (2020) P06005

Review a decade [in CMS]

Enormous progress since the LHC start

Review a decade [in CMS]

Enormous progress since the LHC start

Historical overview [in CMS]

A topic of high interest in both TH and EXP communities.

Pushing the limits in jet tagging using Graph Neural Networks

[How] Can we do better?

- Jet as particle sequence: striking improvement in jet tagging performance
 - Important limitation: Must impose a "human-chosen" ordering [in p_T, displacement, etc..]
 - However, a <u>Jet</u> is an intrinsically <u>unordered set</u> of particles with relationships between the particles
- Beyond sequences: Point clouds

- A very active research area in ML community
- A set of <u>unordered</u> data points in space (x,y,z) with <u>no fixed</u> <u>structure</u>
- Points "close" in space represent physical objects

ParticleNet for jet tagging

- Improve jet representation: "Particle Sequences" → "Particle Clouds"
 - Treat the jet as an <u>unordered set of particles</u>
 - Rich set of information per particle [same ones as for DeepAK8]
 - can be "viewed" as the coordinates of each particle in an abstract space

Improved Network architecture: Graph Neural Networks

- Particle cloud represented as a graph
 - Each particle: **vertex** of the graph
 - Connections between particles: the edges

• **Build** the graph:

- One approach: Fully connected Graph [but computationally very expensive]
- Another possibility: apply some criteria
 - e.g., ParticleNet uses k-Nearest Neighbors (kNN)

ParticleNet for jet tagging (II)

- Last step: Learn from the graphs
 - Follow a hierarchical learning approach:
 First learn local structures and then more global ones
- Convolution operations proven to be very powerful

CMS

EdgeConv: Convolution on point clouds

CMS Y. Wang et al.

Find the *k*-nearest neighbors of each point

EdgeConv: Convolution on point clouds

- Find the *k*-nearest neighbors of each point
- Design a permutation invariant convolution operation
 - ▶ Define an edge feature function → aggregate edge features w/ a symmetric func.

EdgeConv: Convolution on point clouds

CMS Y. Wang et al.

- Find the *k*-nearest neighbors of each point
- Design a permutation invariant **convolution operation**
 - Define an edge feature function \rightarrow aggregate edge features w/ a symmetric func.
- Update Graph (ie Dynamic Graph CNN, DGCNN): Using kNN in the feature space produced after EdgeConv
 - Can be viewed as a mapping from one particle cloud to another

ParticleNet architecture

- Based on EdgeConv and DGCNN
 - but customized for the jet tagging task

EdgeConv block

CMS

H. Qu and LG

PRD 101 056019 (2020)

Performance comparison

Comparison against various DL-based jet tagging algorithms

tested on a common top-tagging dataset

G. Kasieczka et al. SciPost Phys. 7, 014 (2019)

		AUC	Acc	$1/\epsilon_B \ (\epsilon_S = 0.3)$			#Param
				single	mean	median	
DeepAK8	CNN [16]	0.981	0.930	$ 914 \pm 14$	$995{\pm}15$	$975{\pm}18$	610k
	$\operatorname{ResNeXt}$ [31]	0.984	0.936	1122 ± 47	$1270{\pm}28$	$1286{\pm}31$	1.46M
	TopoDNN [18]	0.972	0.916	295 ± 5	$382\pm~5$	378 ± 8	59k
	Multi-body \overline{N} -subjettiness 6 [24]	0.979	0.922	$792{\pm}18$	$798{\pm}12$	$808{\pm}13$	57k
	Multi-body N -subjettiness 8 [24]	0.981	0.929	867 ± 15	$918{\pm}20$	$926{\pm}18$	58k
	TreeNiN [43]	0.982	0.933	1925 ± 11	1202 ± 23	$1188{\pm}24$	34k
	P-CNN	0.980	0.930	732 ± 24	845 ± 13	834 ± 14	348k
	ParticleNet [47] (v1)	0.985	0.938	1298 ± 40	$1412{\pm}45$	$1393{\pm}41$	498k
	LBN [19]	0.981	0.931	836 ± 17	$859{\pm}67$	$966{\pm}20$	705k
	LoLa [22]	0.980	0.929	722 ± 17	$768{\pm}11$	$765{\pm}11$	127k
	LDA [54]	0.955	0.892	$151{\pm}0.4$	$151.5{\pm}0.5$	$151.7{\pm}0.4$	184k
	Energy Flow Polynomials [21]	0.980	0.932	384			1k
	Energy Flow Network [23]	0.979	0.927	633 ± 31	$729{\pm}13$	$726{\pm}11$	82k
	Particle Flow Network [23]	0.982	0.932	891+18	$1063{\pm}21$	$1052{\pm}29$	82k
Ensemble	GoaT	0.985	0.939	1368 ± 140		1549 ± 208	35k
of all taggers:		⇒/ÆIIU	11233		282 366		1.2.2
	ParticleNet	0.986	0.940	1615 ± 93	3)		366k
			1 2,221				

Strong improvement in performance

Jet tagging with ParticleNet in CMS analyses

ParticleNet @ CMS

- Similar ParticleNet architecture used for CMS
 - Same inputs as DeepAK8: PF candidates and Secondary vertices (SVs)
 - Same multiclass output as for DeepAK8

- ... but first we need to tackle a few more things:
 - (de-) correlation with jet mass
 - Calibration using data

Jet mass (de-)correlation

DL-based jet taggers correlated with jet mass

Depending on the analysis this may not be welcome

Jet mass (de-)correlation methods

CMS

JINST 15 (2020) P06005

- Several jet mass decorrelation techniques explored so far
- Sample reweighting:
 - reweight QCD m(j) to match the signal one
- Design Decorrelated Tagger (DDT):
 - Define a metric e.g., $\rho = \ln(m_{\rm SD}^2 / p_{\rm T}^2)$

to capture correlation m(jet)

- Then: transform response to preserve constant BKG rejection across m(j): Tagger^{DDT} = Tagger – X_(%)
- Adversarial networks:
 - Introduce an NN to predict m(jet) from the features extracted by the nominal network;
 - Acts as penalty term in classifier network

but not perfect ...

Jet mass (de-)correlation methods (II)

- A new jet mass de-correlation method for 2-prong tagging
 - Developed in the context of ParticleNet [but applicable to any DL-based tagger]
- Strategy:
 - Design a dedicated "signal" samples w/ flat m(X) [X: spin-0 particle]
 - hadronic decays of $X \rightarrow bb$, cc, qq [on equal fractions]
 - Signal and Background jets re-weighted to a flat distribution in m(jet) and p_T(jet)

Improved mass decorrelation
 No indication of mass sculpting
 even for very tight WPs

Jet mass (de-)correlation methods (II)

- A new jet mass de-correlation method for 2-prong tagging
 - Developed in the context of ParticleNet [but applicable to any DL-based tagger]
- Strategy:
 - Design a dedicated "signal" samples w/ flat m(X) [X: spin-0 particle]
 - hadronic decays of $X \rightarrow bb$, cc, qq [on equal fractions]
 - Signal and Background jets re-weighted to a flat distribution in m(jet) and p_T(jet)

ParticleNet calibration

- Challenge: No pure H/Z \rightarrow bb,cc sample; rely on proxy jets from g \rightarrow bb,cc
 - Yet: difficult to select proxy jets w/ similar characteristics to signal jets

Intermezzo: Impact on physics analyses

Graph Neural Networks in jet physics beyond tagging

Jet mass regression

- Jet mass: powerful observable to discriminate signal (e.g. H→bb jets) from BKGs [e.g. QCD jets]
 - but very sensitive to soft radiation, pileup, ...

CMS

- Grooming techniques [eg, SoftDrop] were developed to mitigate this effect:
 - Iteratively decluster the jet and remove constituents that are:
 - soft and/or wide angle
 - Pros: simple and well tested in data
 - Cons: some inefficiency
 - e.g., some two prong jet identified as 1-prong
- Decays to bb/cc:
 - additional energy loss via the (undetected) neutrinos from semileptonic decays

Jet mass regression (II)

- Develop algorithm to reconstruct jet mass with best possible scale & resolution
 - Meanwhile: avoid "sculpting" of the QCD jet mass distribution
- Exploit ParticleNet architecture to predict m(jet) directly from jet constituents
 - Same inputs (PF candidates + SV)
 - Same network architecture
 - Same training samples as for jet tagging
- Training details:
 - Target mass:
 - Signal: pole mass of spin-0 particle
 - QCD: Generated soft-drop mass
 - Loss function:

$$L(y, y^p) = \sum_{i=1}^n \log(\cosh(y_i^p - y_i))$$

- Substantial improvement in both mass scale and mass resolution
- Tails in m(SD) significantly reduced

Jet mass regression: Performance

CMS-DP-2021-017

CMS

Regressed Mass vs. Tagger WP

Mass resolution vs. m(X)

- >2x improvement in mass resolution
- No indication of mass sculpting even for very tight WPs
- Calibration using W jets: scale (resolution) correction < 1% (3%)

Putting pieces together: Highlights from CMS analyses

The search for $H \rightarrow cc$ in CMS

- Important priority for the Higgs program: measure couplings to 2nd-G fermions
 - but very [very..] challenging at the LHC
- Similar concept to $H \rightarrow bb$ but two huge challenges:
 - Much smaller signal
 - Charm –tagging more challenging than b-tagging
- The $H \rightarrow cc$ search in VH production

Target leptonic decays of V boson - Suppress QCD background Need novel tools and techniques [& HL-LHC]

CMS

CMS-HIG-21-008

The search for $H \rightarrow cc$ in CMS

- Important priority for the Higgs program: measure couplings to 2nd-G fermions
 - but very [very..] challenging at the LHC
- Similar concept to $H \rightarrow$ bb but two huge challenges:
 - Much smaller signal
 - Charm –tagging more challenging than b-tagging
- The $H \rightarrow cc$ search in VH production

Fully explore the Higgs decay topology

two small-R jets

[w/ higher BKGs]

of $\sigma(VH \rightarrow cc)$

CMS

CMS-HIG-21-008

H→cc: Impact of jet tagging developments

$H \rightarrow cc$ results

CMS

95% UL on signal strength (μ)

UL: 14.4 (7.6) Obs (Exp) $1.1 < \kappa_c < 5.5$ ($|\kappa_c| < 3.4$) Obs (Exp) Most stringent constraints to date reaching sensitivity expected for HL-LHC

Nonresonant VBF HH→4b production

- Another big priority of the Higgs program: Search for Higgs-pair production
 - Usually searched for in the ggF channel (σ ~31 fb)
 - VBF production: powerful probe of BSM physics [but very rare: σ~1.7 fb]
 - provides direct sensitivity to the VVHH (κ_{2V}) coupling

Cornerstone of the search:

- Reconstruct each H→bb as a single large-*R* jet
- Exploit ParticleNet-based tools for jet tagging and mass regression

Nonresonant VBF HH→4b production

- Another big priority of the Higgs program: Search for Higgs-pair production
 - Usually searched for in the ggF channel (σ ~31 fb)
 - VBF production: powerful probe of BSM physics [but very rare: σ~1.7 fb]

Summary and outlook

Summary and outlook

- Physics with jets essential for the success of the LHC physics program
 - Large effort to improve/extend our jet tools
- Enormous progress in the development and performance of jet tools
 - Allows us to see much more of the true potential of the CMS apparatus
 - Key player in these developments: Advanced machine learning algorithms
 - particularly using Graph Neural Networks for inhomogeneous detectors
 - Still room for improvement:
 - on the performance side [more advanced techniques, fresh ideas,..]
 - robustness: calibration, systematics uncertainties [e.g., what the DNN learns?]
- Effort pays off: Large gain in performance translates to significant improvement in physics reach
 - even approaching sensitivity expected at HL-LHC [with a <u>much</u> larger dataset]
- Graph-based developments explored beyond Large-R jet tagging:
 - jet mass regression, flavour tagging to small-*R* jets, successfully implemented HLT@Run3, etc..
 - And of course beyond jet physics..