

Recent CMS EFT activities

Sergio Sánchez Cruz

5th General Meeting of the LHC EFT Working Group

Introduction

Top quark physics

Higgs boson physics

CMS EFT program

 \rightarrow aiming to probe new interactions in all sectors of the SM

Electroweak results

New physics in light-by-light scattering

- Light by light scattering allows to probe new interactions quartic gauge couplings with photons
- yyWW and yyZZ interactions
 - Also probed in VBS interactions \rightarrow later in this talk
 - Covered in <u>Matthew's talk</u> in the last LHC EFT Working Group meeting
 - yyyy interactions explored in EXO-21-007
 - Predicted in models with heavy scalars
 - Possible in the SM but highly suppressed in our kinematic regime
 - Can be generated by two dimension 8 operators
 - Interpretation in terms of axion models

$$\mathcal{L}_{4\gamma} \begin{cases} \zeta_1 F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} \\ \\ \zeta_2 F_{\mu\nu} F^{\nu\rho} F_{\rho\lambda} F^{\lambda\mu} \end{cases}$$

In this talk

Analysis - main strategy and CTTPS

- Searching for diphoton events in associated to a pair of (intact) protons
- Protons measured in the CT-PPS detector
- The protons can be correlated with the CMS collision profiting from the beam optics

$$\xi = \frac{\Delta p}{p} \rightarrow \text{proton fractional momentum loss}$$

$$m_{pp} = \sqrt{s \xi_p^+ \xi_p^-}$$
 $ightarrow$ mass of the central system

p

n

p

CMS central detector PPS (+TOTEM) Roman Pots provest provide the providet the provide the provide the providet the providet the providet

Analysis - selection

- Selecting events with two photons in the CMS detector
 - Large transverse momentum: p_{_{\rm T}} > 75 (100) GeV $m_{\gamma\gamma}>350\,{\rm GeV}$
- Momentum of photons consistent with the PPS acceptance

$$\xi^{\pm}_{\gamma\gamma} = rac{1}{\sqrt{s}} \sum_{i=1}^{2} p_{\mathrm{T}}^{\gamma_i} e^{\pm \eta_{\gamma_i}} \quad \in [0.02, 0.2]$$

- Photons required to be back to back $1-|\Delta\phi|/\pi<0.0025$ Protons are required to be the acceptance of the PPS

Analysis - background estimation

- Background dominated by accidental "correlations" between diphoton pair and pile-up events
- Pile-up and diphoton production are independent phenomena
- Background estimated using event-mixing techniques

Signal region and result

- Events selected requiring 2-sigma compatibility
 - On m_{pp} and $m_{\chi\chi}$
 - On y_{pp}^{rr} and y_{yy}
- Observed 1 event
- Expected 1.10 ± 0.24 background events
- No significant deviation :(
- Upper-limit on fiducial cross-section \rightarrow < 0.61 fb

Interpretation

- Exclusive diphoton production rate depends on the WCs
 - Accounting for interference between the signals

$$\frac{d\sigma}{d\Omega} = \frac{1}{16\pi^2 s} \left(s^2 + t^2 + st\right)^2 \left[48\zeta_1^2 + 40\zeta_1\zeta_2 + 11\zeta_2^2\right]$$

- Acceptance and efficiency as a function of ξ_1 and ξ_2 estimated using simulations
- Excluding WCs larger than 10⁻¹³ GeV⁻⁴

Results on VBS production

- Very interesting processes, direct access to QGC and TGC
- Quite complete program of measurements performed in CMS

 Future plans discussed in Matteo's talk in the afternoon

Wy + 2jet production

- Interesting process → receiving contributions from QCD, QED, aTGC and aQGC diagrams
- Electroweak production observed with 2016 data, reporting full Run 2 measurement now
- Measuring:
 - Inclusive cross-section
 - Differential cross-section
 - Limits on dimension 8 operators

Event selection and background estimation

Event selection

- Requiring 1 lepton + 1 photon
- − m_{jj} > 500 GeV, Δη_{jj} > 2.5, m_{WY} > 100 GeV ← VBS-like topology
- − $|y_{W_{Y}}^{-}(y_{j1}^{-}y_{j2}^{-})/2| < 1.2, |\Phi_{W_{Y}}^{-}\Phi_{jj}^{-}| > 2$ ← balance Wy and dijet system

Background estimation

- Misidentified photon and leptons
 - Using data-driven techniques
- Remaining background dominated by QCD Wy production → estimated with simulations

Inclusive and differential cross-section

- Measuring the electroweak production cross-section
- Inclusive xs obtained fitting m_{ii} and m_{lv}
- Wγ EWK production established with 6.0 (6.8) observed (expected) s.d.
- $-\sigma_{ewk}^{fid} = 19.2^{+4.0}_{-3.9}$ fb, $\mu = 0.88^{+0.19}_{-0.18}$, consistent with prediction
- QCD+EWK cross-section also measured consistently with SM
- Differential measurement also performed

Anomalous coupling interpretation

- Tighter selection to optimize sensitivity
- Yield parametrized as a function of Wilson coefficient → quadratic dependence
- Signal efficiency and acceptance included in simulations
- Setting limits on different dimension 8 operators
 - $L_{MX} \rightarrow$ two field strength + 2 (DH)
 - $L_{TX} \rightarrow \text{four field strengths}$

Expected. limit	Observed. limit	Ubound
$-5.1 < f_{M0} / \Lambda^4 < 5.1$	$-5.6 < f_{M0} / \Lambda^4 < 5.5$	1.7
$-7.1 < f_{M1} / \Lambda^4 < 7.4$	$-7.8 < f_{M1}/\Lambda^4 < 8.1$	2.1
$-1.8 < f_{M2} / \Lambda^4 < 1.8$	$-1.9 < f_{M2} / \Lambda^4 < 1.9$	2.0
$-2.5 < f_{M3} / \Lambda^4 < 2.5$	$-2.7 < f_{M3}/\Lambda^4 < 2.7$	2.7
$-3.3 < f_{M4} / \Lambda^4 < 3.3$	$-3.7 < f_{M4} / \Lambda^4 < 3.6$	2.3
$-3.4 < f_{M5}/\Lambda^4 < 3.6$	$-3.9 < f_{M5} / \Lambda^4 < 3.9$	2.7
$-13 < f_{M7} / \Lambda^4 < 13$	$-14 < f_{M7} / \Lambda^4 < 14$	2.2
$-0.43 < f_{T0}/\Lambda^4 < 0.51$	$-0.47 < f_{T0}/\Lambda^4 < 0.51$	1.9
$-0.27 < f_{T1}/\Lambda^4 < 0.31$	$-0.31 < f_{T1}/\Lambda^4 < 0.34$	2.5
$-0.72 < f_{T2}/\Lambda^4 < 0.92$	$-0.85 < f_{T2}/\Lambda^4 < 1.0$	2.3
$-0.29 < f_{T5}/\Lambda^4 < 0.31$	$-0.31 < f_{T5}/\Lambda^4 < 0.33$	2.6
$-0.23 < f_{T6}/\Lambda^4 < 0.25$	$-0.25 < f_{T6}/\Lambda^4 < 0.27$	2.9
$-0.60 < f_{T7} / \Lambda^4 < 0.68$	$-0.67 < f_{T7} / \Lambda^4 < 0.73$	3.1

Higgs and top physics results

Latest Higgs results - STXS interpretation

- Program of Higgs measurements in the STXS with outstanding constraining power
- Latest results performed in the HEL
- Probing 7 independent WCs

Latest Higgs results - direct measurement

- Also probing Higgs interactions directly using anomalous couplings \rightarrow can be rotated to SMEFT
- Using $H \rightarrow ZZ$ decays and $ttH(\gamma\gamma)$
- Constraining all parameters simultaneously

$$\begin{split} A(\mathrm{HV}_{1}\mathrm{V}_{2}) &= \frac{1}{v} \left[a_{1}^{\mathrm{VV}} + \frac{\kappa_{1}^{\mathrm{VV}} q_{\mathrm{V1}}^{2} + \kappa_{2}^{\mathrm{VV}} q_{\mathrm{V2}}^{2}}{\left(\Lambda_{1}^{\mathrm{VV}}\right)^{2}} + \frac{\kappa_{3}^{\mathrm{VV}} (q_{\mathrm{V1}} + q_{\mathrm{V2}})^{2}}{\left(\Lambda_{Q}^{\mathrm{VV}}\right)^{2}} \right] m_{\mathrm{V1}}^{2} \epsilon_{\mathrm{V1}}^{*} \epsilon_{\mathrm{V2}}^{*} \\ &+ \frac{1}{v} a_{2}^{\mathrm{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{v} a_{3}^{\mathrm{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}, \end{split}$$

$$A(\mathrm{Hff}) = -\frac{m_{\mathrm{f}}}{v}\overline{\psi}_{\mathrm{f}} \left(\kappa_{\mathrm{f}} + \mathrm{i}\tilde{\kappa}_{\mathrm{f}}\gamma_{5}\right)\psi_{\mathrm{f}}$$

Recent top quark results

- Probing top quark in all possible fronts
- Reinterpretation of top quark spin correlation measurements \rightarrow
- Direct measurement in associated top production
 - Suitable for tricky final state, using full experimental info

Multilepton channel (ttH, ttZ, ttW, tH, tZq) 2012.04120

Conclusions

- CMS is developing a strong program of EFT measurements
- Looking at all possible directions
 - Electroweak physics
 - Top quark sector
 - Higgs physics
- Unfortunately, not seeing large deviations, but instead setting strong constraints
- Keep posted for many more interesting results