ATLAS+CMS EFT Fitting Exercise

5th General Meeting of the LHC EFT Working Group

Fabian Stäger on behalf of the ATLAS and $\underline{\text{CMS}}$ EFT combination teams

 $2 \ {\rm December} \ 2022$

Introduction, 1/3

- LHC EFT WG Area 4, CMS+ATLAS EFT Fitting exercise: Work towards EFT combination with input measurements from top, Higgs, and electroweak sector
- Agreed on SMEFT conventions:
 - $\rightarrow\,$ Single insertion of dimension 6 operators in Warsaw basis
 - $\rightarrow (G_{\rm F}, m_W, m_Z)$ input parameter scheme
 - \rightarrow topU31 flavour symmetry: (q_p, u_p, d_p) with p = 1, 2 and (Q, t, b)
- Git repositories:
 - \rightarrow CMS: https://github.com/ajgilbert/eft-exercise-cms
 - \rightarrow ATLAS: https://gitlab.cern.ch/nberger/smeft-combination-exercise
- Additional information in talks from earlier this year:
 - \rightarrow Andrew Gilbert's talk at Area 4 meeting (February)
 - $\rightarrow\,$ Rahul Balasubramanian's talk at 4th LHC EFT WG General Meeting (May)

1

Introduction, 2/3

- EFT reinterpretation of existing differential cross section measurements
 - 1) Parameterise cross sections using MG5_aMC@NLO + SMEFTsim3 \rightarrow Pythia \rightarrow Rivet

$$\sigma(\boldsymbol{c}) = \sigma_{\rm SM} \left(1 + \sum_{i} A_i c_i + \sum_{i,j} B_{ij} c_i c_j \right)$$

2) Construct multivariate Gaussian PDF

$$f(\boldsymbol{c}) = \exp\left[\left(\boldsymbol{\sigma}(\boldsymbol{c}) - \hat{\boldsymbol{\sigma}}\right)^{\mathrm{T}} V_{\mathrm{xs}}^{-1} \left(\boldsymbol{\sigma}(\boldsymbol{c}) - \hat{\boldsymbol{\sigma}}\right)\right]$$

 $\rightarrow \sigma(c)$ and $\hat{\sigma}$: predicted and measured cross sections $\rightarrow V_{\rm xs}$: covariance matrix of measurements

3) Derive constraints on Wilson coefficients c_i

Introduction, 3/3

- Outline of this talk
 - $\rightarrow~$ Analyses entering the Combination
 - $\rightarrow~{\rm Reproducibility}$ of EFT parameterisations
 - $\rightarrow\,$ Linear and Linear+Quadratic fit with Principal Component Analysis
 - $\rightarrow~$ Topics that can be studied with this exercise

Input Measurements, 1/3

- Analyses entering the combination:
 - $\rightarrow\,$ Higgs sector:
 - CMS-HIG-19-015 (STXS H $\rightarrow \gamma\gamma$)
 - ATLAS-CONF-2020-053 (STXS $H \rightarrow \gamma \gamma + H \rightarrow 4\ell$)
 - \rightarrow Top sector:
 - CMS-TOP-17-023 (single top, *t*-channel)
 - $\rightarrow\,$ Electroweak sector:
 - CMS-SMP-20-005 (W γ)
 - ATLAS-STDM-2017-24 (WW)
 - ATLAS-STDM-2018-03 (WZ)
 - ATLAS-STDM-2017-27 (Zjj)
 - arXiv:hep-ex/0509008 (Z-pole data from LEP and SLAC)
- Can always be extended, looking for more inputs (Differential cross section measurements with covariance matrix and Rivet routine)

Input Measurements, 2/3

- Higgs sector: CMS-HIG-19-015 (STXS ${\rm H} \to \gamma \gamma)$
 - \rightarrow Simplified Template Cross Section (STXS) measurement
 - $\rightarrow~$ Binning based on Higgs production mode
 - $\rightarrow\,$ Gluon-gluon fusion bins not yet included

• Top sector: CMS-TOP-17-023 (single top, t-channel)

(graphic from CMS-HIG-19-015)

(plot from CMS-TOP-17-023)

Input Measurements, 3/3

• Electroweak Sector

 \rightarrow CMS-SMP-20-005: W γ production, double differential cross section in $p_{\rm T}^{\gamma} \times |\Delta \phi_f|$

 \rightarrow

 \rightarrow

EFT Parameterisation: example Z+jj

- Reproducing EFT parameterisation can be challenging and depends on several choices
 - \rightarrow Process definition (e.g. number of QCD and EW vertices)
 - \rightarrow Use of propagator corrections
 - \rightarrow Reweighting vs. dedicated samples
 - $\rightarrow\,$ Inclusive or separate SM, interference, and quadratic terms

EFT Parameterisation: Different approaches to discuss

- Different approaches to event generation for calculating EFT scaling terms
 - \rightarrow Generate events with $c_i = 0$ and use reweighting module
 - $\rightarrow\,$ Dedicated samples for each Wilson coefficient
- Separate SM, interference, and quadratic contributions?
 - \rightarrow NP<=1: $\sigma = \sigma_{SM} + \sum c_i \sigma_i + \sum c_i c_j \sigma_{ij}$
 - \rightarrow NP=0: $\sigma = \sigma_{\rm SM}$
 - \rightarrow NP^2==1: $\sigma = \sum_{i} c_i \sigma_i$
 - \rightarrow NP==1: $\sigma = \sum c_i c_j \sigma_{ij}$
- Propagator corrections?
- Study the differences and discuss which is the best approach for this project

Constraints on Wilson coefficients from individual scans

• Combining STXS H $\rightarrow \gamma \gamma$, single top, W γ (all CMS), WW, and Z+jj (ATLAS)

 $\rightarrow\,$ Remember: parameterisations preliminary

- Due to correlations can not do full fit with all Wilson coefficients floating
 - $\rightarrow~$ Get constraints from 1-by-1 scans with all other coefficients fixed to zero

Principal Component Analysis (PCA)

1) Rotate Hessian matrix to EFT basis using matrix of linear scaling parameters A_i

$$V_{\rm EFT}^{-1} = P^{\rm T} V_{\rm xs}^{-1} P, \quad \text{with } P = \begin{pmatrix} A_{c_1}^{\rm bin \ 1} & A_{c_2}^{\rm bin \ 2} & \dots \\ A_{c_1}^{\rm bin \ 2} & A_{c_2}^{\rm bin \ 2} & \dots \\ \vdots & \vdots & \end{pmatrix}$$

2) Eigendecomposition of $V_{\text{EFT}}^{-1} \longrightarrow$ Eigenvectors x_i and eigenvalues λ_i

3) Obtain set of orthogonal directions in Wilson coefficient space: $PC_i = \sum_k x_i^k c_k$ \rightarrow Expected uncertainty on measurement of PC_i is $1/\sqrt{\lambda_i}$

Basis rotation (CMS side)

• Result of PCA, rotation matrix $(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots)^T$:

chb cha chi3chi1cha{hwchb{hi3cli1 chwfhu che chi1chg cthrefqf4j3f4j3f4j3ctwf4j3qbwf4ttrfhrew cli3 cbgrefar&la clu cli1 cli3f4j1 flj3f1j18

Basis rotation (ATLAS side)

• ATLAS: Principal Component Analysis within subgroups of operators

https://indico.cern.ch/event/1136803/contributions/4849627/attachments/2449246/4197140/20220523_lhceftwg.pdf

Fit in rotated basis (CMS side): 1/2

- Flat directions (eigenvectors with small λ) fixed to zero
- Can now do full fit with all POI floating

Fit in rotated basis (CMS side): 2/2

- As expected, the principal components are uncorrelated when doing a linear only fit
 - $\rightarrow\,$ By adding quadratic terms we reintroduce correlations

Fit in rotated basis (ATLAS side)

- Combination includes more analyses than on CMS side
 - https://indico.cern.ch/event/1136803/contributions/4849627/attachments/2449246/4197140/20220523_lhceftwg.pdf

Topics that could be studied with this exercise

- Truncation studies:
 - \rightarrow Study effects of data and MC «clipping» (not always clear which variable to cut on)
- Validation of Linear+Quadratic fits:
 - $\rightarrow~{\rm Can}$ global likelihood minima be identified
 - $\rightarrow~$ Validity of confidence intervals
- Uncertainties on EFT parameterisation
- Flavour symmetry:
 - $\rightarrow\,$ Rederive EFT parameterisation under different flavour assumptions, compare number of sensitive directions
- Matching to UV models

Summary and Outlook

- LHC EFT WG combination exercise, ATLAS and CMS teams working in parallel
- EFT reinterpretation of differential cross section measurements (covariances, Rivet)
- So far three CMS and four (two) ATLAS analyses included, but looking to add more
- Discuss how to do event generation to calculate scaling terms
 - $\rightarrow\,$ Use reweighting module or dedicated samples?
 - $\rightarrow\,$ Separate SM, interference, and quadratic contributions?
- Using PCA to determine uncorrelated linear combinations of Wilson coefficients
- Many things that can be studied with this exercise:
 - $\rightarrow\,$ EFT truncation effects, flavour assumptions, UV matching, ...