Additional proposal for the treatment of EFT truncation, validity and related uncertainties

Tim Cohen (CERN/EPFL/UOregon) **J**HEP

Published for SISSA by 🖄 Springer

RECEIVED: December 9, 2021 REVISED: March 11, 2022 ACCEPTED: April 3, 2022 PUBLISHED: April 26, 2022

Unitarity bounds on effective field theories at the LHC

THEP04 (2022) 155

C

Timothy Cohen, Joel Doss and Xiaochuan Lu

Institute for Fundamental Science, Department of Physics, University of Oregon, Eugene, OR 97403, U.S.A.

E-mail: tcohen@uoregon.edu, jdoss@uoregon.edu, xlu@uoregon.edu

ABSTRACT: Effective Field Theory (EFT) extensions of the Standard Model are tools to compute observables (e.g. cross sections with partonic center-of-mass energy $\sqrt{\hat{s}}$) as a systematically improvable expansion suppressed by a new physics scale M. If one is interested in EFT predictions in the parameter space where $M < \sqrt{\hat{s}}$, concerns of selfconsistency emerge, which can manifest as a violation of perturbative partial-wave unitarity. However, when we search for the effects of an EFT at a hadron collider with center-of-mass energy \sqrt{s} using an inclusive strategy, we typically do not have access to the event-byevent value of $\sqrt{\hat{s}}$. This motivates the need for a formalism that incorporates parton distribution functions into the perturbative partial-wave unitarity analysis. Developing such a framework and initiating an exploration of its implications is the goal of this work. Our approach opens up a potentially valid region of the EFT parameter space where $M \ll \sqrt{s}$. We provide evidence that there exist valid EFTs in this parameter space. The perturbative unitarity bounds are sensitive to the details of a given search, an effect we investigate by varying kinematic cuts.

KEYWORDS: Beyond Standard Model, Effective Field Theories

ARXIV EPRINT: 2111.09895

OPEN ACCESS, © The Authors. Article funded by SCOAP³.

https://doi.org/10.1007/JHEP04(2022)155

Proposal based on this paper + Work in progress with Spencer Chang, Joel Doss, Xiaochuan Lu, and Aria Radick

Executive Summary

Our proposal is based on first principles.

The essential idea is to incorporate the parton distribution functions into the computation of the partial wave unitarity bound on EFT validity.

Derivation

Generalize partial wave unitarity bound to allow for mixed initial state

$$\begin{split} |\langle f|T|i\rangle|^2 &\leq 1 \qquad \Longleftrightarrow \qquad \operatorname{tr}\left(\rho_i \, T^{\dagger} \, |f\rangle\langle f| \, T\right) \leq 1 \\ & \text{with} \\ \rho_p &= \sum_i \, p_i \, |i\rangle\langle i| = \sum_i \, p_i \, \rho_i \end{split}$$

The bound becomes

$$\operatorname{tr}\left(\rho_{p} T^{\dagger} \left|f\right\rangle \langle f \left|T\right)\right| = \sum_{i} p_{i} \operatorname{tr}\left(\rho_{i} T^{\dagger} \left|f\right\rangle \langle f \left|T\right)\right| \leq \sum_{i} p_{i}$$

Derivation

Defining the parton level matrix element:

$$\hat{\Omega}_{i \to f} \equiv \left| \mathcal{M}_{i \to f} \right|^2 = \left| \langle f | T | i \rangle \right|^2$$

The validity condition becomes

$$\Omega_{pp\to\phi\phi^{\dagger}}(s) \equiv \frac{\sum_{\{q,\bar{q}\}\in p} \int_{\tau_{\phi}}^{1} \mathrm{d}\tau \, L_{q\bar{q}}(\tau) \, \hat{\Omega}_{\phi_{q}\phi^{\dagger}_{q}\to\phi\phi^{\dagger}}(\hat{s}=\tau s)}{\sum_{\{q,\bar{q}\}\in p} \int_{\tau_{\phi}}^{1} \mathrm{d}\tau \, L_{q\bar{q}}(\tau)} \leq 1$$

Where we have introduce the parton luminosity function:

$$\begin{split} L_{q\bar{q}}\left(\tau\right) &\equiv \int_{0}^{1} \mathrm{d}x_{1} \mathrm{d}x_{2} \left[f_{q}(x_{1}) f_{\bar{q}}(x_{2}) + f_{\bar{q}}(x_{1}) f_{q}(x_{2}) \right] \delta(\tau - x_{1} x_{2}) \\ &= 2 \int_{\tau}^{1} \mathrm{d}x \, \frac{1}{x} \, f_{q}(x) \, f_{\bar{q}}(\tau/x) \, . \end{split}$$

It makes sense

Toy example

EFT power counting fails in invalid region

Using t-channel toy model

Contours are power counting uncertainty

Bounds depend on cuts

Outlook

More needs to be done:

In first paper, we used scalar toy models

Incorporating spin is not a problem

Working to generalize formalism to include angular cuts

Long term vision:

Unitarity bound can be incorporated into priors for EFT fits

Interplay of unitarity bound and signal region cuts can be used to inform search strategies