

EXPLORING EFT WITH ML AT THE LHC

R. Schöfbeck (HEPHY Vienna), Dec. 2nd, 2022

HEP MODELLING FROM ML POINT OF VIEW

NEYMAN-PEARSON & LIKELHOOD RATIO "TRICK"

arxiv:1503.0x7622

NEYMAN-PEARSON & LIKELHOOD RATIO "TRICK"

arxiv:1503.0x7622

SENDING MIXED SIGNALS TO THE LOSS FUNCTION

- Sending 'mixed signals' to the loss function
 - Averages the training data set suboptimal when linear effects dominate
 - Classifier does not reflect knowledge on the **0**-dependence
 - Separate trainings per $\mathbf{\theta}$ not feasible for high parameter dimensions \rightarrow parametrize classifiers
 - For simulation: We can do better in SMEFT than the "simplified model" style simulation with 1 sample per **0**
- Definition: SMEFT-specific ML exploits the analytic structure of the SMEFT predictions
 - The challenge of global SM-EFT searches will require a high degree of "semi" automatization

simulating different samples at each parameter point "SUSY style"

REFERENCES (SELECTION)

- WH with Bkgs Madminer: Neural networks based likelihood-free inference & related techniques ٠ $2 \frac{\times 10^{-2}}{1}$ $\tilde{C}_{HD} = 0$ • K. Cranmer , J. Pavez , and G. Louppe 1506.02169 1.5 $L = 300 \, \text{fb}^{-1}$ J. Brehmer, K. Cranmer, G. Louppe, J. Pavez [1805.00013] [1805.00020] [1805.12244] J. Brehmer, F. Kling, I. Espejo, K. Cranmer 0.5[1907.10621] $C_{Hq}^{\left(3\right) }$ J. Brehmer, S. Dawson, S. Homiller, F. Kling, T. Plehn [1908.06980] ٠ -0.5• A. Butter, T. Plehn, N. Soybelman, J. Brehmer 2109.10414 Full Kin. Imp. STXS -1.5Rate established many of the *main ideas* & *statistical interpretation* in various *NN applications* • $^{-2+}_{-0.2}$ -0.1 0.10 C_{HW} Weight derivative regression (A.Valassi) 2003.12853 **Parametrized classifiers** for SM-EFT: NN with quadratic structure ٠ S. Chen, A. Glioti, G. Panico, A. Wulzer <u>JHEP 05 (2021) 247</u> my practical experience **Boosted Information Trees:** Tree algorithms & boosting ٠ S. Chatterjee, S. Rohshap, N. Frohner, <u>R.S.</u>, D. Schwarz [<u>2107.10859</u>], [<u>2205.12976</u>] ML₄EFT R. Ambrosio, J. Hoeve, M. Madigan, J. Rojo, V. Sanz \rightarrow talk later today 2211.02058 ٠
 - All approaches are "SMEFT-specific ML" with differences mostly on the practical side

0.2

LIKELIHOOD-FREE INFERENCE FOR SM-EFT

LIKELIHOOD-FREE INFERENCE FOR SM-EFT

- 1. Sampling of $p(\boldsymbol{x}, \boldsymbol{z}_{d}, \boldsymbol{z}_{s}, \boldsymbol{z}_{p} | \boldsymbol{\theta})$, true L. intractable: $p(\boldsymbol{x} | \boldsymbol{\theta}) = \int d\boldsymbol{z}_{d} d\boldsymbol{z}_{s} d\boldsymbol{z}_{p} p(\boldsymbol{x} | \boldsymbol{z}_{d}) p(\boldsymbol{z}_{d} | \boldsymbol{z}_{s}) p(\boldsymbol{z}_{s} | \boldsymbol{z}_{p}) p(\boldsymbol{z}_{p} | \boldsymbol{\theta})$
- 2. Exploit simplicity of the joint space: Intractable factors cancel in the joint likelihood ratio

$$r(\boldsymbol{x}, \boldsymbol{z}|\boldsymbol{\theta}, \mathrm{SM}) \equiv \frac{p(\boldsymbol{x}, \boldsymbol{z}_{\mathrm{d}}, \boldsymbol{z}_{\mathrm{s}}, \boldsymbol{z}_{\mathrm{p}}|\boldsymbol{\theta})}{p(\boldsymbol{x}, \boldsymbol{z}_{\mathrm{d}}, \boldsymbol{z}_{\mathrm{s}}, \boldsymbol{z}_{\mathrm{p}}|\mathrm{SM})} = \frac{p(\boldsymbol{x}|\boldsymbol{z}_{\mathrm{d}})}{p(\boldsymbol{x}|\boldsymbol{z}_{\mathrm{d}})} \frac{p(\boldsymbol{z}_{\mathrm{d}}|\boldsymbol{z}_{\mathrm{s}})}{p(\boldsymbol{z}_{\mathrm{d}}|\boldsymbol{z}_{\mathrm{s}})} \frac{p(\boldsymbol{z}_{\mathrm{s}}|\boldsymbol{z}_{\mathrm{p}})}{p(\boldsymbol{z}_{\mathrm{s}}|\boldsymbol{z}_{\mathrm{p}})} \frac{p(\boldsymbol{z}_{\mathrm{p}}|\boldsymbol{\theta})}{p(\boldsymbol{z}_{\mathrm{p}}|\mathrm{SM})} \propto \frac{|\mathcal{M}(\boldsymbol{z}_{\mathrm{p}}|\boldsymbol{\theta})|^{2}}{|\mathcal{M}(\boldsymbol{z}_{\mathrm{p}}|\mathrm{SM})|^{2}} = \frac{w(\boldsymbol{\theta})}{w(\mathrm{SM})}$$

Change in likelihood of simulated observation x with latent "history" z going from "SM" to θ

staged simulation in forward mode: Intractable factors cancel re-calcuable theory prediction weighted simulation

LIKELIHOOD-FREE INFERENCE FOR SM-EFT

1. Sampling of
$$p(\boldsymbol{x}, \boldsymbol{z}_{\mathrm{d}}, \boldsymbol{z}_{\mathrm{s}}, \boldsymbol{z}_{\mathrm{p}} | \boldsymbol{\theta})$$
, true L. intractable: $p(\boldsymbol{x}|\boldsymbol{\theta}) = \int \mathrm{d}\boldsymbol{z}_{\mathrm{d}} \,\mathrm{d}\boldsymbol{z}_{\mathrm{s}} \,\mathrm{d}\boldsymbol{z}_{\mathrm{p}} \,p(\boldsymbol{x}|\boldsymbol{z}_{\mathrm{d}}) \,p(\boldsymbol{z}_{\mathrm{d}}|\boldsymbol{z}_{\mathrm{s}}) \,p(\boldsymbol{z}_{\mathrm{p}}|\boldsymbol{\theta})$
2. Exploit simplicity of the joint space: Intractable factors cancel in the joint likelihood ratio
 $r(\boldsymbol{x}, \boldsymbol{z}|\boldsymbol{\theta}, \mathrm{SM}) \equiv \frac{p(\boldsymbol{x}, \boldsymbol{z}_{\mathrm{d}}, \boldsymbol{z}_{\mathrm{s}}, \boldsymbol{z}_{\mathrm{p}}|\boldsymbol{\theta})}{p(\boldsymbol{x}, \boldsymbol{z}_{\mathrm{d}}, \boldsymbol{z}_{\mathrm{s}}, \boldsymbol{z}_{\mathrm{p}}|\mathrm{SM})} = \frac{p(\boldsymbol{x}|\boldsymbol{z}_{\mathrm{d}})}{p(\boldsymbol{x}|\boldsymbol{z}_{\mathrm{d}})} \frac{p(\boldsymbol{z}_{\mathrm{d}}|\boldsymbol{z}_{\mathrm{s}})}{p(\boldsymbol{z}_{\mathrm{d}}|\boldsymbol{z}_{\mathrm{s}})} \frac{p(\boldsymbol{z}_{\mathrm{p}}|\boldsymbol{\theta})}{p(\boldsymbol{z}_{\mathrm{s}}|\boldsymbol{z}_{\mathrm{p}})} \propto \frac{|\mathcal{M}(\boldsymbol{z}_{\mathrm{p}}|\boldsymbol{\theta})|^{2}}{|\mathcal{M}(\boldsymbol{z}_{\mathrm{p}}|\mathrm{SM})|^{2}} = \frac{w(\boldsymbol{\theta})}{w(\mathrm{SM})}$
Change in likelihood of simulated observation x with latent "history" z going from "SM" to $\boldsymbol{\theta}$

3. Regress (e.g.) in the joint likelihood ratio, ignoring the latent space. Available empirically.

$$L = \int d\boldsymbol{x} d\boldsymbol{z} p(\boldsymbol{x}, \boldsymbol{z} | \text{SM}) \left(r(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}, \text{SM}) - \hat{f}_{\boldsymbol{\theta}}(\boldsymbol{x}) \right)^2 \longrightarrow \min$$

4. Obtain change of likelihood for a specific observation, suitably integrating latent histories. NP optimal! $f_{\theta}^{*}(\boldsymbol{x}) = \frac{\sigma(\theta)}{\sigma(\theta_{0})} \frac{\int \mathrm{d}\boldsymbol{z} \, p(\boldsymbol{x}, \boldsymbol{z}) r(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}, \boldsymbol{\theta}_{0})}{\int \mathrm{d}\boldsymbol{z} \, p(\boldsymbol{x}, \boldsymbol{z})} = \frac{\sigma(\theta)}{\sigma(\theta_{0})} \frac{\int \mathrm{d}\boldsymbol{z} \, p(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta})}{\int \mathrm{d}\boldsymbol{z} \, p(\boldsymbol{x}, \boldsymbol{z})} = \frac{\sigma(\theta)}{\sigma(\theta_{0})} \frac{\int \mathrm{d}\boldsymbol{z} \, p(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}_{0})}{\sigma(\theta_{0})} = \frac{\sigma(\theta)}{\sigma(\theta_{0})} \frac{p(\boldsymbol{x} | \boldsymbol{\theta})}{p(\boldsymbol{x} | \boldsymbol{\theta}_{0})} = r(\boldsymbol{x} | \boldsymbol{\theta}, \boldsymbol{\theta}_{0})$

what we actually want: change in likelihood of a specific observation

PARAMETRIZED CLASSIFIERS: NETS & TREES

RS et. al., [2107.10859], [2205.12976]

$$L = \sum_{\boldsymbol{\theta} \in \boldsymbol{\mathcal{B}}} \int d\boldsymbol{x} \left(p(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}) \hat{f}(\boldsymbol{x}; \boldsymbol{\theta})^2 + p(\boldsymbol{x}, \boldsymbol{z} | SM) (1 - \hat{f}(\boldsymbol{x}; \boldsymbol{\theta}))^2 \right)$$

Make loss function aware of analytic SMEFT structure

Invert likelihood trick $\hat{f}(\boldsymbol{x}; \boldsymbol{\theta}) = \frac{1}{1 + \hat{r}(\boldsymbol{x}; \boldsymbol{\theta})}$ with positive polynomial of NN -outputs

$$\hat{r}(\boldsymbol{x};\boldsymbol{\theta}) = \left(1 + \sum_{a} \boldsymbol{\theta}_{a} \hat{n}_{a}(\boldsymbol{x})\right)^{2} + \sum_{a} \left(\sum_{b \geq a} \boldsymbol{\theta}_{b} \hat{n}_{ab}(\boldsymbol{x})\right)^{2}$$

Fit NNs simultaneously

$$L = \sum_{\boldsymbol{\theta} \in \boldsymbol{\mathcal{B}}} \int d\boldsymbol{x} \, d\boldsymbol{z} \, p(\boldsymbol{x}, \boldsymbol{z} | SM) \left(r(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}, SM) - \hat{F}(\boldsymbol{x}, \boldsymbol{\theta}) \right)^2$$

Tree ansatz with polynomial SMEFT dependence

Can solve for degrees of freedom of the predictor \rightarrow Large training speedup

Obtain loss function for optimal partitioning, solved by e.g. CART algorithm \rightarrow Boost

$$\hat{F}(\boldsymbol{x}, \boldsymbol{\theta}) = \sum_{j \in \mathcal{J}} \mathbb{1}_{j}(\boldsymbol{x}) F_{j}(\boldsymbol{\theta})$$

 $F_j(oldsymbol{ heta}) = rac{\sum_{i \in j} w_i(oldsymbol{ heta})}{\sum_{i \in j} w_i(oldsymbol{ heta}_0)} \equiv rac{w_j(oldsymbol{ heta})}{w_j(oldsymbol{ heta}_0)}$

$$L = -\sum_{oldsymbol{ heta} \in \mathcal{B}} \sum_{j \in \mathcal{J}} rac{w_j^2(oldsymbol{ heta})}{w_j(oldsymbol{ heta}_0)}$$

linear truncation: optimize Fisher information

- Test-case: models of ZH and WZ
 - per-event weighting strategy
- Left: "Boosted Information Tree (BIT)"
 - 3 WC, 9 DOF, 500k events, ZH
 - 200 trees, D=5, 9 minutes of training
 - also more realistic study, including backgrounds [2107.10859], [2205.12976]
- Bottom: (weighted) Parametrized Classifiers

• 1WC, 2 DOF, 500k events, ZH, 2xNN

11

BINNING VS. OPTIMALITY

• N_{bin} = 5 already very close to optimum (in this example!)

- How to chose? Smooth interpolation: Form N_{bin} evenly sized quantiles of p($r(x|\theta,SM)$ | SM)
- No free lunch Analysis dependent choices are needed
 - A case-by-case compromise if background estimation is CPU intensive
 - Systematics treatment for unbinned analyses (beyond $M_{4\ell}$) less far developed

PRACTICALITIES OF SMEFT WEIGHTING

• single-operator insertions: quadratic x-sec

 $\mathrm{d}\sigma(oldsymbol{ heta}) \propto |\mathcal{M}_{\mathrm{SM}}(oldsymbol{z}) + oldsymbol{ heta}_a \mathcal{M}^a_{\mathrm{BSM}}(oldsymbol{z})|^2 \mathrm{d}oldsymbol{z}$

- compute probabilistic mass as polynomial event weights w_i(θ)
- 1. sample-based: Expand MEs and simulate independent samples
- 2. sampling at a fixed θ_o evaluate $d\sigma(\theta)/dz$ for at base-points θ

$$w_i(oldsymbol{ heta}) = w_{i,0} + \sum_a w_{i,a} \, heta_a + rac{1}{2} \sum_{a,b} w_{ab} \, heta_a heta_b = rac{\sigma(oldsymbol{ heta})}{\sigma(oldsymbol{ heta}_0)} \cdot r(oldsymbol{x}_i, oldsymbol{z}_i | oldsymbol{ heta}, oldsymbol{ heta}_0)$$

- SM interference pure SMEFT *interpret as "joint" LR* more robust EFT phase space coverage in **1**.
- higher ML sample efficiency in 2.
 - Comparative study [Cranmer et.al. <u>1808.00973</u>]
 - Reduces risk of overtraining ML-training
- differences don't matter (much) for yield predictions

PRACTICALITIES OF EVENT WEIGHTING & ML

- 1. Training weight distribution can be uneven
 - In particular in the presence of backgrounds, e.g., Drell-Yan tails \rightarrow factor 10² from event to event at SM
 - Can (/need) to regularize the regressors \rightarrow much experience for NNs and trees
- 2. Negative weights in NLO samples
 - Spoil statistical interpretation of the *empirical* "joint pdf": r(x_i,z_i|θ,SM)
 - Empirical loss function not locally positive definite
 - What was "Overtraining" in LO samples may be a loss of convergence at NLO
 - (My experience:) only pathological toy cases
 - Tighten regulator by ≈ (1+f)/(1-f) with f = n⁺/n⁻
 - All yields are positive in large sample limit
 - Algorithms support positivity constraint (slows convergence)
 - In practice: Not needed, so far; although stricter regularization needed
 - If problematic: Maybe possible to develop new ideas based on, e.g., NLO re-sampling [<u>B. Nachman, J. Thaler 2007.11586</u>]

MORE ON THE SIMULATED SMEFT PREDICTION

- 3. Worse stochastics when rare subprocess is affected
 - Example: Consider the q-Z vector coupling in ttZ
 - Compare 1st/2nd with 3rd generation SMEFT effects:
 - 1st/2nd generation operators enter only in events where the Z couples to the initial state quark
 - $w(\theta^{(33)}=\pm 2) \neq 1$ for a most events $\rightarrow OK$
 - $w(\theta^{(11,22)}=\pm 2) = 1$ for a large fraction \rightarrow reduces stats
 - A feature of the process, not the weighting strategy
 - Several ML tools to estimate variance of the estimator, not (to the best of my knowledge) used for SMEFT ML
- 4. Linear and quadratic terms may be (perfectly) correlated.
 - For a point-like interaction $r = (1 + \theta r')^2$, e.g. c_{HQ_3} in VH at LO
 - backgrounds distort the relation but not break the correlation
 - Lesson: Case-by-case understanding of test statistic is necessary

MORE ON THE SIMULATED SMEFT PREDICTION

- 3. Worse stochastics when rare subprocess is affected
 - Example: Consider the q-Z vector coupling in ttZ
 - Compare 1st/2nd with 3rd generation SMEFT effects:
 - 1st/2nd generation operators enter only in events where the Z couples to the initial state quark
 - $w(\theta^{(33)}=\pm 2) \neq 1$ for a most events $\rightarrow OK$
 - $w(\theta^{(11,22)}=\pm 2) = 1$ for a large fraction \rightarrow reduces stats
 - A feature of the process, not the weighting strategy
 - Several ML tools to estimate variance of the estimator, not (to the best of my knowledge) used for SMEFT ML
- 4. Linear and quadratic terms may be (perfectly) correlated.
 - For a point-like interaction $r = (1 + \theta r')^2$, e.g. c_{HQ_3} in VH at LO
 - backgrounds distort the relation but not break the correlation
 - Lesson: Case-by-case understanding of test statistic is necessary

HELICITY-SUMMED REWEIGHTING

- 5. Operators with non-SM helicity configurations can't be weighted from the SM point *per helicity.*
 - extreme case of difference in phase space coverage
 - Approach #1: weight-based simulation for c≠o, to ensure sampling of all helicity configurations (used, e.g., in CMS)
 - Approach #2: Helicity-summed reweighting [arxiv:1607.00763]
 - Option in MG, not widely used but available in reweighting tools
 - Can reweight different models, provided LHE information is accessible
 - Helicity-summed reweighting preserves the possibility of in-experiment reinterpretation
 - No longer bound to initial choice of model?
 - need to keep LHE information from the events in SR
 - Persistency is important
 - If non-zero signal: Need to solve background correlations as triangular matrix
 - We will need Multi-differential high-dimensional SM-EFT analysis of candles

POSSIBLE ACTION ITEMS / CONCLUSION

A. Suggest comparative study of all approaches (& aware of STXS parametrisation)

	Sample based	Event based (per hel.)	Event based (summed hel.)	
Persistency	I sample per term	l number per event & term	l number per event & term	
Madgraph reweighting	None	$W_{new} = \frac{ M_{new}^{h} ^{2}}{ M_{orig}^{h} ^{2}}W_{orig}$	$W_{new} = \frac{ M_{new} ^2}{ M_{orig} ^2} W_{orig}$	
Phase space mismatches?	No problem	May require c≠0	May require c≠0 (fewer cases)	
Can be staged?	Yes, including hel.	No new hel.	Yes, including hel.	
ML sample efficient?	Less so	Yes	Yes	

- B. Analysis persistency for later reinterpretation tools, practises, shortcomings
 - Are we ready for an excess?
- C. Best practices for publication of ML results
 - proposal [Publishing statistical models: Getting the most out of particle physics experiments, 2109.0491]

PER-SAMPLEVS REWEIGHTING – LOSS FUNCTIONS

$$\begin{split} L &= \int \mathrm{d}\sigma_{\boldsymbol{\theta}} \hat{f}(\boldsymbol{x})^2 + \int \mathrm{d}\sigma_{\mathrm{SM}} (1 - \hat{f}(\boldsymbol{x}))^2 \\ &= \int \mathrm{d}\sigma_{\mathrm{SM}} \left(\frac{\mathrm{d}\sigma_{\boldsymbol{\theta}}}{\mathrm{d}\sigma_{\mathrm{SM}}} \hat{f}(\boldsymbol{x})^2 + (1 - \hat{f}(\boldsymbol{x}))^2 \right) \\ &= \int \mathrm{d}\boldsymbol{x} \, p(\boldsymbol{x}, \boldsymbol{z} | \mathrm{SM}) \left(r(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}, \mathrm{SM}) \hat{f}(\boldsymbol{x})^2 + (1 - \hat{f}(\boldsymbol{x}))^2 \right) \end{split}$$

DISENTANGLING SM-EFT IN THE HIGGS-SECTOR

- example #1: ZZ* decay channel in all production modes
- experimentally clean ("golden channel")
- 10 = 5 (+5 CP odd) operators: c_{HW} , c_{HB} , c_{HW} , c_{UH} , c_{HWB}
- attempt to optimally disentangle production modes

- Reconstructed bins contain a mixture of production channels and backgrounds (mostly ZZ*) Lepton RNN Processes MLP Jet RNN Reconstructed Event Category gg2H-0*j -p*^H-Low gg2H-p^H-High **ATLAS** Simulation $p_{\rm T}^{4\ell}, D_{ZZ^*}, m_{12}, m_{34},$ aa2H-0*i -p^H-*Hiah qq2Hqq-VBF ggF, ZZ^* $p_{\mathrm{T}}^{\ell}, \eta_{\ell}$ aa2H-1*i -p^H*-Low aa2Haa-VH $H \rightarrow ZZ^* \rightarrow 4I$ $|\cos\theta^*|, \cos\theta_1, \phi_{ZZ}$ aa2H-1*j -p^H*-Med gq2Hqq-BSM √s = 13 TeV, 139 fb⁻¹ $p_{\mathrm{T}}^{4\ell}, p_{\mathrm{T}}^{j}, \eta_{j},$ gg2H-1*j*-p^H_-High WH-Lep ggF, VBF, ZZ^* $p_{\mathrm{T}}^{\ell}, \eta_{\ell}$ aa2H-2i ttH+tH $\Delta R_{4\ell i}, D_{ZZ^*}$ 0*j -p*_4l_Low $p_{\mathrm{T}}^{4\ell}, p_{\mathrm{T}}^{j}, \eta_{j}, E_{\mathrm{T}}^{\mathrm{miss}},$ 0*j-p*^{4l}-Med ggF, VBF, ZZ^* $p_{\mathrm{T}}^{\ell}, \eta_{\ell}$ 1*j - p*⁴-Low $\Delta R_{4\ell j}, D_{ZZ^*}, \eta_{4\ell}$ 1*i - p*-41-Med $p_{\mathrm{T}}^{4\ell}, p_{\mathrm{T}}^{j}, \eta_{j},$ 1*j-p*^{4l}-High ggF, VBF $p_{\mathrm{T}}^{\ell}, \eta_{\ell}$ 1*j - p*^{4l}-BSM-like $E_{\rm T}^{\rm miss}, \Delta R_{4\ell j}, \eta_{4\ell}$ 2j 2*j*-BSM-like $m_{jj}, p_{\mathrm{T}}^{4\ell j j}$ ggF, VBF, VH $p_{\mathrm{T}}^{\ell}, \eta_{\ell}$ $p_{\mathrm{T}}^{j}, \eta_{j}$ VH-Lep-enriched 0*j-p*^{4l}-High $\eta_{ZZ}^{\text{Zepp}}, p_{\text{T}}^{4\ell j j}$ $p_{\mathrm{T}}^{\ell}, \eta_{\ell}$ $p_{\mathrm{T}}^{j}, \eta_{j}$ ggF, VBF ttH-Had-enriched Njets, Nb-jets, 70%, ttH-Lep-enriched p_{T}^{ℓ} VH, ttH $E_{\rm T}^{\rm miss}, H_{\rm T}$ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 $p_{\mathrm{T}}^{4\ell}, m_{jj},$ **Expected Composition** $p_{\mathrm{T}}^{\ell}, \eta_{\ell}$ $p_{\mathrm{T}}^{j}, \eta_{j}$ ggF, ttH, tXX $\Delta R_{4\ell i}, N_{b-\text{jets},70\%},$
 - ML is used to separate production modes in each category
 - per reco-channel: NNs trained with 2-7 observables
 - combine with RNNs (LSTMs) using variable-length jets and leptons
 - common network layer for multiclassification in e.g., ggF, VBF, ZZ*

24

TTH IN THE MULTILEPTON CHANNEL

• example #2: t(t)H multilepton in 2 ℓ SS+o τ , 2 ℓ SS+1 τ , 3 ℓ final states

JHEP (submitted)

- 3 DNNs for signal/background multi-classification
- targets t-t-HYukawa coupling (=) in *κ*-framework

• in SM-EFT: "CP" structure (complex phase) of $\, H H^\dagger {ar q}_p u_r { ilde H}$

- use ML for separating CP-even vs. odd effects
 - gradient-BDT <u>XGBoost</u>
 - 38 input features (kinematic properties)

TTH IN THE MULTILEPTON CHANNEL

- BDT exploits the likelihood trick to obtain CP even/odd fraction from the data
- limits on deviations of the t-t-H interaction (κ_t , $\widetilde{\kappa}_t$) including combinations with other final states
- example of learning "of" SM-EFT effects
- issue: large top backgrounds from ttZ and ttW in all measurement regions → combine sectors!
- τ lepton ID performance has significant impact

JHEP (submitted

RECENT SM-EFT RESULTS (SELECTION!)

RECENT SM-EFT RESULTS (SELECTION!)

TOP AND DIBOSON SECTORS

SM-EFT EFFECTS ARE EVERYWHERE

- Multi-differential high-dimensional SM-EFT analysis of candles:
 - Drell-Yan, W+Jets, ttbar, single-top (t), etc.
- Then move to ZH (+ Drell-Yan), WH (+ttbar), $H \rightarrow WW$ (+WW and ttbar)
- Can go in parallel provided re-interpretation is feasible
 - Needs close-to complete likelihood \rightarrow a whole separate discussion
- ML versatile tools to optimally extract SM-EFT effects without too much tuning need → parametrized classifiers are an example

 $N_i \ge 3$

N, ≥ 1

77.5 fb⁻¹ (13 TeV

 $N_1 = 4$

 $N_j \ge 1$

N_b ≥ 1

Χγ

Rare

Uncertainty

tt+Z

Dat

tīΖ

wz

 $N_1 = 4$

 $N_i \ge 1$

N_b ≥ 0

TREES & BOOSTING

- Let us make a tree-based ansatz for the differential cross-section ratio R
- The "weak learner" is a tree associating a sub-region (j) of a partitioning \mathcal{J} with a predictive function F_i
- Fitting tree: Optimize "node split positions" on some loss. Trained (e.g. greedily) on the *ensemble*.
 - An axis-aligned tree is limited. Remove the limitation iteratively with "boosting".

LEARNING MORE WITH TREES

CONCRETE SOLUTION: TREE BOOSTING

iteration

• Boosting: Fit linear model iteratively to pseudo-residuals of the preceding iteration with learning rate η

iteration

• Ansatz :
$$\hat{F}^{(b)}(\boldsymbol{x}, \boldsymbol{\theta}) = \hat{f}(\boldsymbol{x}, \boldsymbol{\theta}) + \eta \hat{F}^{(b-1)}(\boldsymbol{x}, \boldsymbol{\theta})$$

• Insert into the loss function:

.... perform this iteratively

NEURAL NETWORKS REGRESS; THE BIT DOESN'T

- Each NN layer maps $L_{n+1} = \sigma(W_{ij} L_n + b_i)$. These DOF need to select & predict the regressed values.
- In the BIT, we only select. The prediction (F_j) is computed from the boxed events. This is possible, because a tree algorithm is (greedely) trained on the *ensemble*. The BITs' DOF are NOT updated event-by-event.

HOW TO PARAMETRIZE?

• Quantum field theory: Differential cross section predict polynomial SM-EFT dependence:

 $\mathrm{d}\sigma(oldsymbol{ heta}) \propto |\mathcal{M}_{\mathrm{SM}}(oldsymbol{z}) + oldsymbol{ heta}_a \mathcal{M}^a_{\mathrm{BSM}}(oldsymbol{z})|^2 \mathrm{d}oldsymbol{z}$

probability = wave function, squared

२6

• additivity of the matrix element \rightarrow incur a simple (polynomial) dependence in θ for fixed configuration z

$$\frac{\mathrm{d}\sigma(\boldsymbol{x},\boldsymbol{\theta})}{\mathrm{d}\boldsymbol{x}} = \frac{\mathrm{d}\sigma_{\mathrm{SM}}(\boldsymbol{x})}{\mathrm{d}\boldsymbol{x}} + \sum_{a} \theta_{a} \frac{\mathrm{d}\sigma_{\mathrm{int.}}^{a}(\boldsymbol{x})}{\mathrm{d}\boldsymbol{x}} + \frac{1}{2} \sum_{a,b} \theta_{a} \theta_{b} \frac{\mathrm{d}\sigma_{\mathrm{BSM}}^{ab}(\boldsymbol{x})}{\mathrm{d}\boldsymbol{x}}$$

• Neyman-Pearson:
$$q(\mathcal{D}) = \frac{L(\mathcal{D}|\boldsymbol{\theta})}{L(\mathcal{D}|\mathrm{SM})}$$
 where $L(\mathcal{D}|\boldsymbol{\theta}) = P_{\mathcal{L}\sigma(\boldsymbol{\theta})}(N) \times \prod_{i=1}^{N} p(\boldsymbol{x}_i|\boldsymbol{\theta})$
 $q_{\boldsymbol{\theta}}(\mathcal{D}) = \mathcal{L}(\sigma_{\boldsymbol{\theta}} - \sigma_{\mathrm{SM}}) - \sum_{\boldsymbol{x}_i \in \mathcal{D}} \log R(\boldsymbol{x}_i|\boldsymbol{\theta}, \mathrm{SM})$ Optimality can be achieved with cross-section ratio R or its universal coefficient functions R_a, R_{ab}
 $\mathcal{R}(\boldsymbol{x}|\boldsymbol{\theta}, \mathrm{SM}) = \frac{\mathrm{d}\sigma(\boldsymbol{x}, \boldsymbol{\theta})/\mathrm{d}\boldsymbol{x}}{\mathrm{d}\sigma(\boldsymbol{x}, \mathrm{SM})/\mathrm{d}\boldsymbol{x}} = 1 + \sum_{a} \theta_a R_a(\boldsymbol{x}) + \frac{1}{2} \sum_{a,b} \theta_a \theta_b R_{ab}(\boldsymbol{x})$
NB #1 Curse of dimensionality is lifted!! NB #2: R is positive: Fit universal dependence using the most general quadratic polynomial $\hat{\boldsymbol{x}} = \left(1 + \sum_{a} \theta_a \hat{n}_a(\boldsymbol{x})\right)^2 + \sum_{a} \left(\sum_{b>a} \theta_b \hat{n}_{ab}(\boldsymbol{x})\right)^2$

OPTIMAL PARAMETRIZED CLASSIFIERS

• studied in the context of $p \ p \to W^{\pm} \ Z \to (l^{\pm} \ \nu) \ (l^{+} \ l^{-})$ for the most important SM-EFT operators

JHEP 05 (2021) 247

JHEP 07 (2022) 032

ATLAS-CONF-NOTE-2016-043,

- high purity, ~85%-90% as seen by <u>ATLAS</u> and <u>CMS</u> (with SM-EFT)
- Adam optimizer, pytorch, 10⁴ epochs, learning rate of 10⁻⁴
 - 4 hidden layers á 32 nodes, 2 networks simultaneously trained
 - alternatives configurations studied
- establish optimality with analytic model (Toy), very similar at (N)LO

PYTORCH IMPLEMENTATION

- ZH production, analytic model, 500k events
 - Single coefficient: c_{HW}
 - 4 hidden layers á 32 nodes, 2 networks simultaneously trained
 - 10⁴ epochs, Adam optimizer, LR=10⁻⁴
- The training is *simultaneous* and it must be!
 - Positivity is a property of the polynomial, not of an individual coefficient.
- several options to emphasise the tails
 - bias loss with function of A(x) or choosing base points
- just a proof of principle implementation

K. Cranmer , J. Pavez , and G. Louppe J. Brehmer, K. Cranmer, G. Louppe, J. Pavez J. Brehmer, F. Kling, I. Espejo, K. Cranmer [<u>1506.02169</u>] [<u>1805.00013</u>] [<u>1805.00020</u>] [<u>1805.12244</u>] [<u>1907.10621</u>]

• It's somewhat of a miracle that one can regress on the observable-level likelihood ratio

Observables	Integration over intractable factors	Detector & reconstruction	Parton shower		Parton-level momenta	Theory parameters
$p(oldsymbol{x} oldsymbol{ heta}) =$	$\int \mathrm{d}oldsymbol{z}_{\mathrm{d}}\mathrm{d}oldsymbol{z}_{\mathrm{s}}\mathrm{d}oldsymbol{z}_{\mathrm{p}} p(oldsymbol{x} oldsymbol{z}_{\mathrm{d}})$	$p(\boldsymbol{z}_{\mathrm{d}} \boldsymbol{z}_{\mathrm{s}})$)	$p(oldsymbol{z}_{\mathrm{s}} oldsymbol{z}_{\mathrm{p}})$	$p(oldsymbol{z}_{\mathrm{p}} oldsymbol{ heta})$	
$q_{\boldsymbol{\theta}}(\mathcal{D}) = \text{const.} - \sum \log \frac{\sigma(\boldsymbol{\theta})}{\sigma(\boldsymbol{\theta})} \frac{p(\boldsymbol{x}_i \boldsymbol{\theta})}{\sigma(\boldsymbol{\theta})}$					$\mathrm{d}\sigma(oldsymbol{ heta})\propto$	
$\mathbf{x}_i \in \mathcal{D}$ \mathcal{T} $\mathbf{x}_i \in \mathcal{D}$ $\sigma(\boldsymbol{\theta}_0) \ p(\mathbf{x}_i \boldsymbol{\theta}_0)$					$ \mathcal{M}_{ ext{SM}}(oldsymbol{z})+oldsymbol{ heta}_a\mathcal{M}^a_{ ext{BSM}}(oldsymbol{z}) ^2 ext{d}oldsymbol{z}$	
					calcuable & r	re-calcuable
super	powers					

based on this talk: <u>C. Kranmer, J. Brehmer</u>

"JOINT" DISTRIBUTIONS ARE MUCH SIMPLER

- To understand the power of simulation, look at the simpler "joint" pdf
- The intractable factors cancel in the joint LR 1.

$$r(\boldsymbol{x}, \boldsymbol{z}|\boldsymbol{\theta}, \boldsymbol{\theta}_{0}) \equiv \frac{p(\boldsymbol{x}, \boldsymbol{z}_{\mathrm{d}}, \boldsymbol{z}_{\mathrm{s}}, \boldsymbol{z}_{\mathrm{p}}|\boldsymbol{\theta})}{p(\boldsymbol{x}, \boldsymbol{z}_{\mathrm{d}}, \boldsymbol{z}_{\mathrm{s}}, \boldsymbol{z}_{\mathrm{p}}|\boldsymbol{\theta}_{0})} = \frac{p(\boldsymbol{x}|\boldsymbol{z}_{\mathrm{d}})}{p(\boldsymbol{x}|\boldsymbol{z}_{\mathrm{d}})} \frac{p(\boldsymbol{z}_{\mathrm{d}}|\boldsymbol{z}_{\mathrm{s}})}{p(\boldsymbol{z}_{\mathrm{d}}|\boldsymbol{z}_{\mathrm{s}})} \frac{p(\boldsymbol{z}_{\mathrm{p}}|\boldsymbol{\theta})}{p(\boldsymbol{z}_{\mathrm{s}}|\boldsymbol{z}_{\mathrm{p}})} \propto \frac{|\mathcal{M}(\boldsymbol{z}_{\mathrm{p}}|\boldsymbol{\theta})|^{2}}{|\mathcal{M}(\boldsymbol{z}_{\mathrm{p}}|\boldsymbol{\theta}_{0})|^{2}}$$
Change in likelihood of observation x (with history z) going from $\boldsymbol{\theta}_{0}$ to $\boldsymbol{\theta}$

$$\frac{\mathrm{staged simulation:}}{\mathrm{Intractable factors cancel}} \xrightarrow{\mathrm{re-calcuable theory prediction}}$$

Now fit a general function on the join space with a regressor depending only on the observables: 2.

$$L = \int d\boldsymbol{x} \, d\boldsymbol{z} \, p(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}_0) \left(f(\boldsymbol{x}, \boldsymbol{z}) - \hat{f}(\boldsymbol{x}) \right)^2 \longrightarrow \min \qquad f^*(\boldsymbol{x}) = \frac{\int d\boldsymbol{z} \, p(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}_0) f(\boldsymbol{x}, \boldsymbol{z})}{\int d\boldsymbol{z} \, p(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}_0)} \qquad \text{Latent space}$$

ce is integrated

Now chose $f(x,z) = r(x,z \mid \theta, \theta_0)$ which is available in simulation & fit with expressive function: 3.

$$f^{*}(\boldsymbol{x}) = \frac{\int \mathrm{d}\boldsymbol{z} \, p(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}_{0}) f(\boldsymbol{x}, \boldsymbol{z})}{\int \mathrm{d}\boldsymbol{z} \, p(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}_{0})} = \frac{\int \mathrm{d}\boldsymbol{z} \, p(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}_{0}) p(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}_{0})}{\int \mathrm{d}\boldsymbol{z} \, p(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}_{0})} = \frac{\int \mathrm{d}\boldsymbol{z} \, p(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}_{0})}{\int \mathrm{d}\boldsymbol{z} \, p(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}_{0})} = \frac{\int \mathrm{d}\boldsymbol{z} \, p(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}_{0})}{\int \mathrm{d}\boldsymbol{z} \, p(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}_{0})} = \frac{\int \mathrm{d}\boldsymbol{z} \, p(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}_{0})}{\int \mathrm{d}\boldsymbol{z} \, p(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}_{0})} = \frac{p(\boldsymbol{x} | \boldsymbol{\theta}_{0})}{p(\boldsymbol{x} | \boldsymbol{\theta}_{0})}$$
Available from simulation

... statistical framework of all the parametrized classifiers

40

EXPLOITING PARAMETRIZED SIMULATION WITH TREES

 θ_2

 $\mathrm{d}\sigma(oldsymbol{ heta}) \propto |\mathcal{M}_{\mathrm{SM}}(oldsymbol{z}) + oldsymbol{ heta}_a \mathcal{M}^a_{\mathrm{BSM}}(oldsymbol{z})|^2 \mathrm{d}oldsymbol{z}$

- sampling z at a fixed θ_o
- evaluate $d\sigma(\theta)$ for sufficient number of base-points θ
- fix polynomial coefficients of event weights w_i(θ)

$$w_{i}(\boldsymbol{\theta}) = w_{i,0} + \sum_{a} w_{i,a} \theta_{a} + \frac{1}{2} \sum_{a,b} w_{ab} \theta_{a} \theta_{b} = \frac{\sigma(\boldsymbol{\theta})}{\sigma(\boldsymbol{\theta}_{0})} \cdot r(\boldsymbol{x}_{i}, \boldsymbol{z}_{i} | \boldsymbol{\theta}, \boldsymbol{\theta}_{0})$$
SM interference pure interpretation valid at LO

- obtain predictions for, e.g., yields for all x,z and θ

probability =

wave function,

squared

EXPLOITING PARAMETRIZED SIMULATION WITH TREES

• Quantum field theory: Differential cross section have structure

 $\mathrm{d}\sigma(\boldsymbol{\theta}) \propto |\mathcal{M}_{\mathrm{SM}}(\boldsymbol{z}) + \boldsymbol{\theta}_a \mathcal{M}_{\mathrm{BSM}}^a(\boldsymbol{z})|^2 \mathrm{d}\boldsymbol{z}$

- sampling z at a fixed θ_o
- evaluate $d\sigma(\theta)$ for sufficient number of base-points θ
- fix polynomial coefficients of event weights w_i(θ)

$$w_{i}(\boldsymbol{\theta}) = w_{i,0} + \sum_{a} w_{i,a} \theta_{a} + \frac{1}{2} \sum_{a,b} w_{ab} \theta_{a} \theta_{b} = \frac{\sigma(\boldsymbol{\theta})}{\sigma(\boldsymbol{\theta}_{0})} \cdot r(\boldsymbol{x}_{i}, \boldsymbol{z}_{i} | \boldsymbol{\theta}, \boldsymbol{\theta}_{0})$$
SM interference pure interpretation valid at LO

• obtain predictions for, e.g., yields for all x,z and θ

probability =

wave function,

squared

EXPLOITING PARAMETRIZED SIMULATION WITH TREES

• Quantum field theory: Differential cross section have structure

 $\mathrm{d}\sigma(oldsymbol{ heta}) \propto |\mathcal{M}_{\mathrm{SM}}(oldsymbol{z}) + oldsymbol{ heta}_a \mathcal{M}^a_{\mathrm{BSM}}(oldsymbol{z})|^2 \mathrm{d}oldsymbol{z}$

- sampling \mathbf{z} at a fixed $\mathbf{\theta}_{o}$
- evaluate $d\sigma(\theta)$ for sufficient number of base-points θ
- fix polynomial coefficients of event weights w_i(θ)

$$w_{i}(\boldsymbol{\theta}) = w_{i,0} + \sum_{a} w_{i,a} \theta_{a} + \frac{1}{2} \sum_{a,b} w_{ab} \theta_{a} \theta_{b} = \frac{\sigma(\boldsymbol{\theta})}{\sigma(\boldsymbol{\theta}_{0})} \cdot r(\boldsymbol{x}_{i}, \boldsymbol{z}_{i} | \boldsymbol{\theta}, \boldsymbol{\theta}_{0})$$
SM interference pure interpretation valid at LO

- obtain predictions for, e.g., yields for all x,z and θ

probability =

wave function,

squared

TREES & BOOSTING

- Let us make a tree-based prediction for R or its coefficient function
- Weak learner: Tree ↔ Associates a predictive function F_j (flexible!) with a sub-region j of a partitioning
- Fitting tree: Optimize "node split positions" on some loss. Trained (e.g. greedily) on the ensemble.

CONCRETE SOLUTION: TREE BOOSTING

• Boosting: Fit linear model iteratively to pseudo-residuals of the preceding iteration

• Ansatz :
$$\hat{F}^{(b)}(\boldsymbol{x}) = \hat{f}^{(b)}(\boldsymbol{x}) + \eta \hat{F}^{(b-1)}(\boldsymbol{x})$$

• Insert into the loss function: current previous iteration

$$MSE[\hat{f}_{a}^{(b)}] = \sum_{\substack{(\boldsymbol{x}, \boldsymbol{z}, w)_{i} \in \mathcal{D} \\ \text{current} \\ \text{iteration}}} w_{i,0} \left| \frac{w_{i,a}}{w_{i,0}} - \eta \hat{F}_{a}^{(b-1)}(\boldsymbol{x}_{i}) - \hat{f}_{a}^{(b)}(\boldsymbol{x}_{i}) \right|^{2} = \sum_{\substack{(\boldsymbol{x}, \boldsymbol{z}, w)_{i} \in \mathcal{D} \\ \text{w}_{i,0}}} w_{i,0} \left| \frac{w_{i,a} - \eta w_{i,0} \hat{F}_{a}^{(b-1)}(\boldsymbol{x}_{i})}{w_{i,0}} - \hat{f}_{a}^{(b)}(\boldsymbol{x}_{i}) \right|^{2}$$

$$previous iteration current iteration
$$reweighting$$

$$MSE structure at iteration b$$$$

.... perform this iteratively

TOP AND DIBOSON SECTORS

