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HEP MODELLING FROM ML POINT OF VIEW

• generative models for MEs

from perturbative QFT, 

sample parton level, and 

provide likelihood ratios via

Short-distance

physics

• parton shower

• factorization / 

hadronization models

• decay branchings,

calculated & measured

• large latent space

Detector interactions

• ionization (Bethe-Bloch), szintillation, 

brem., transition-radiation … more latent variables

Long-distance

physics

Maximum-

likelihood

estimate

Confidence limits

based on

likelihood-ratio tests 

𝛉MLE = 

argmax𝛉 L(𝒟,𝛉)

PDF

ME PS
hadron-

ization

decay

SIM

ALCA
RECO

Event reconstruction & data analysis

• observed 

feature vector {x}

• used in MLE

• hypo.-tests & CL

• Simulation:

sampling of {x,z} for 

ML training & test design



NEYMAN-PEARSON & LIKELHOOD RATIO “TRICK”
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data-set with

feature vectors x

theory parameters

Neyman-Pearson Lemma:  The likelihood ratio

test statistic is optimal

arxiv:1503.0x7622

diff xsec ratio

https://arxiv.org/pdf/1503.07622.pdf


NEYMAN-PEARSON & LIKELHOOD RATIO “TRICK”
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data-set with

feature vectors x

theory parameters

Neyman-Pearson Lemma:  The likelihood ratio

test statistic is optimal

arxiv:1503.0x7622

supervised learning provides (close-to) optimal test statistiscs

Can we avoid retrain for each hypothesis separately?

classifiertruth

(supervised)

training samples 

Likelihood ratio “trick”: label two values: 𝛉, SM

diff xsec ratio

https://arxiv.org/pdf/1503.07622.pdf


SENDING MIXED SIGNALS TO THE LOSS FUNCTION
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mixing signals & 

case dependent mixes

• Sending ‘mixed signals’ to the loss function

• Averages the training data set  - suboptimal when linear effects dominate

• Classifier does not reflect knowledge on the 𝛉-dependence

• Separate trainings per 𝛉 not feasible for high parameter dimensions → parametrize classifiers

• For simulation: We can do better in SMEFT than the “simplified model” - style simulation with 1 sample per 𝛉

• Definition: SMEFT-specific ML exploits the analytic structure of the SMEFT predictions

• The challenge of global SM-EFT searches will require a high degree of “semi” automatization

Weak vector coupling (L)W
ea

k 
ve

ct
o

r 
co

u
p

lin
g

 (
R

)

𝛉0

𝛉1

𝛉2

simulating different

samples at each

parameter point

“SUSY style”
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REFERENCES (SELECTION)
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• Madminer: Neural networks based likelihood-free inference & related techniques 

• K. Cranmer , J. Pavez , and G. Louppe [1506.02169] 

J. Brehmer, K. Cranmer, G. Louppe, J. Pavez [1805.00013] [1805.00020] [1805.12244]

J. Brehmer, F. Kling, I. Espejo, K. Cranmer [1907.10621]

• J. Brehmer, S. Dawson, S. Homiller, F. Kling, T. Plehn [1908.06980]

• A. Butter, T. Plehn, N. Soybelman, J. Brehmer [2109.10414]

• established many of the main ideas & statistical interpretation in various NN applications

• Weight derivative regression (A.Valassi) [2003.12853]

• Parametrized classifiers for SM-EFT: NN with quadratic structure

• S. Chen, A. Glioti, G. Panico, A. Wulzer [JHEP 05 (2021) 247]

• Boosted Information Trees: Tree algorithms & boosting

• S. Chatterjee, S. Rohshap, N. Frohner, R.S., D. Schwarz [2107.10859], [2205.12976]

• ML4EFT R. Ambrosio, J. Hoeve, M. Madigan, J. Rojo, V. Sanz [2211.02058] → talk later today

• All approaches are “SMEFT-specific ML” with differences mostly on the practical side

my practical

experience

WH with Bkgs

https://arxiv.org/pdf/1506.02169.pdf
https://arxiv.org/pdf/1805.00013.pdf
https://arxiv.org/pdf/1805.00020.pdf
https://arxiv.org/pdf/1805.12244.pdf
https://arxiv.org/pdf/1907.10621.pdf
https://arxiv.org/pdf/1908.06980.pdf
https://arxiv.org/pdf/2109.10414.pdf
https://arxiv.org/abs/2003.12853
https://arxiv.org/abs/2007.10356
https://arxiv.org/abs/2107.10859
https://arxiv.org/abs/2205.12976
https://arxiv.org/abs/2211.02058


LIKELIHOOD-FREE INFERENCE FOR SM-EFT

1. Sampling of
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[Madminer 1805.00020] 

, true L. intractable:

https://arxiv.org/pdf/1805.00020.pdf


LIKELIHOOD-FREE INFERENCE FOR SM-EFT

1. Sampling of

2. Exploit simplicity of the joint space: Intractable factors cancel in the joint likelihood ratio
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[Madminer 1805.00020] 

Change in likelihood of simulated observation x 

with latent “history” z going from “SM” to 𝛉
staged simulation in forward mode:

Intractable factors cancel

re-calcuable

theory prediction

, true L. intractable:

weighted

simulation

https://arxiv.org/pdf/1805.00020.pdf


LIKELIHOOD-FREE INFERENCE FOR SM-EFT

1. Sampling of

2. Exploit simplicity of the joint space: Intractable factors cancel in the joint likelihood ratio

3. Regress (e.g.) in the joint likelihood ratio, ignoring the latent space. Available empirically.

4. Obtain change of likelihood for a specific observation, suitably integrating latent histories. NP optimal!
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[Madminer 1805.00020] 

Change in likelihood of simulated observation x 

with latent “history” z going from “SM” to 𝛉
staged simulation in forward mode:

Intractable factors cancel

Latent space is integrated Available from simulation

what we actually want:

change in likelihood of

a specific observation

re-calcuable

theory prediction

, true L. intractable:

weighted

simulation

https://arxiv.org/pdf/1805.00020.pdf


Make loss function aware of analytic SMEFT structure

Invert likelihood trick 

with positive polynomial of NN -outputs

Fit NNs simultaneously

PARAMETRIZED CLASSIFIERS: NETS & TREES
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Wulzer et.al.  [JHEP 05 (2021) 247]

RS et. al., [2107.10859], [2205.12976]

Tree ansatz with polynomial

SMEFT dependence

Can solve for degrees of

freedom of the predictor

→ Large training speedup

Obtain loss function for optimal

partitioning, solved by e.g. 

CART algorithm → Boost
linear truncation: optimize 

Fisher information

parametric

dependence

parametric

dependence

https://arxiv.org/abs/2007.10356
https://arxiv.org/abs/2107.10859
https://arxiv.org/abs/2205.12976


• Test-case: models of ZH and WZ

• per-event weighting strategy

• Left: “Boosted Information Tree (BIT)”

• 3 WC, 9 DOF, 500k events, ZH

• 200 trees, D=5, 9 minutes of training

• also more realistic study, including 

backgrounds [2107.10859], [2205.12976]

• Bottom: (weighted) Parametrized Classifiers 

• 1 WC, 2 DOF, 500k events, ZH, 2xNN
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BINNING VS. OPTIMALITY

• Optimality holds for unbinned LL ratio tests. How important is the binning? 

• Nbin = 5 already very close to optimum (in this example!)

• How to chose? Smooth interpolation: Form Nbin evenly sized quantiles of p( r(x|𝛉,SM) | SM )

• No free lunch – Analysis dependent choices are needed

• A case-by-case compromise if background estimation is CPU intensive

• Systematics treatment for unbinned analyses (beyond M4ℓ) less far developed
12

tree depth: 

theoretical 

optimum

Boosted 

information 

tree

(BIT)

[arXiv:2107.10859, arXiv:2205:12976]

improvement

over “RunII”

strategy

https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf
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PRACTICALITIES OF SMEFT WEIGHTING

• single-operator insertions: quadratic x-sec 

• compute probabilistic mass as polynomial event weights wi(𝛉) 

1. sample-based: Expand MEs and simulate independent samples

2. sampling at a fixed 𝛉0 evaluate dσ(𝛉)/dz for at base-points 𝛉

• more robust EFT phase space coverage in 1.

• higher ML sample efficiency in 2.

• Comparative study  [Cranmer et.al. 1808.00973] 

• Reduces risk of overtraining  ML-training

• differences don’t matter (much) for yield predictions

SM interference pure SMEFT interpret as “joint” LR

simulating interference &

(dim-6)2 samples

per-event

weighting

• generically better 
sampling of EFT-
relevant phase space

• need one sample per 
term in 𝛉 expansion

• no independent 
stochastics in EFT-term

• better overtraining if 
weight distribution is 
uniform

𝛉0

𝛉1

𝛉2

𝛉0

𝛉1

𝛉2

https://arxiv.org/pdf/1808.00973.pdf


PRACTICALITIES OF EVENT WEIGHTING & ML

1. Training weight distribution can be uneven

• In particular in the presence of backgrounds, e.g., Drell-Yan tails → factor 102 from event to event at SM

• Can (/need) to regularize the regressors → much experience for NNs and trees

2. Negative weights in NLO samples

• Spoil statistical interpretation of the empirical “joint pdf”:  r(xi,zi|𝛉,SM)

• Empirical loss function not locally positive definite

• What was “Overtraining” in LO samples may be a loss of convergence at NLO

• (My experience:) only pathological toy cases

• Tighten regulator by ≈ (1+f)/(1-f) with f = n+/n-

• All yields are positive in large sample limit 

• Algorithms support positivity constraint (slows convergence)

• In practice: Not needed, so far; although stricter regularization needed

• If problematic: Maybe possible to develop new ideas based on, e.g., NLO re-sampling 

[B. Nachman, J. Thaler 2007.11586]

14

RHWtil, HWtil

bkgs 

~10x larger

weight

https://arxiv.org/pdf/2007.11586.pdf


MORE ON  THE SIMULATED SMEFT PREDICTION

3. Worse stochastics when rare subprocess is affected

• Example: Consider the q-Z vector coupling in ttZ 

• Compare 1st/2nd with 3rd generation SMEFT effects:

• 1st/2nd generation operators enter only in events where

the Z couples to the initial state quark

• w(𝛉(33)=±2) ≠ 1 for a most events → OK

• w(𝛉(11,22)=±2) = 1 for a large fraction → reduces stats

• A feature of the process, not the weighting strategy

• Several ML tools to estimate variance of the estimator,

not (to the best of my knowledge) used for SMEFT ML

4. Linear and quadratic terms may be (perfectly) correlated.

• For a point-like interaction r = (1 + 𝛉 r’)2, e.g. cHQ3 in VH at LO

• backgrounds distort the relation but not break the correlation

• Lesson: Case-by-case understanding of test statistic is necessary

3rd gen. SM
c(33)=+2

c(33)=+2

1st/2nd gen. SM
c(11/22)=+2

c(11/22)=+2

15

main process

subprocess

bad



MORE ON  THE SIMULATED SMEFT PREDICTION

3. Worse stochastics when rare subprocess is affected

• Example: Consider the q-Z vector coupling in ttZ 

• Compare 1st/2nd with 3rd generation SMEFT effects:

• 1st/2nd generation operators enter only in events where

the Z couples to the initial state quark

• w(𝛉(33)=±2) ≠ 1 for a most events → OK

• w(𝛉(11,22)=±2) = 1 for a large fraction → reduces stats

• A feature of the process, not the weighting strategy

• Several ML tools to estimate variance of the estimator,

not (to the best of my knowledge) used for SMEFT ML

4. Linear and quadratic terms may be (perfectly) correlated.

• For a point-like interaction r = (1 + 𝛉 r’)2, e.g. cHQ3 in VH at LO

• backgrounds distort the relation but not break the correlation

• Lesson: Case-by-case understanding of test statistic is necessary
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R
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RcHWtil, lin

R
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W
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l, 

q
u
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special case

r ∝ (1 + 𝛉 r’)2



5. Operators with non-SM helicity configurations can’t be weighted from the 

SM point per helicity. 

• extreme case of difference in phase space coverage

• Approach #1: weight-based simulation for c≠0,

to ensure sampling of all helicity configurations (used, e.g., in CMS)

• Approach #2: Helicity-summed reweighting [arxiv:1607.00763]

• Option in MG, not widely used but available in reweighting tools

• Can reweight different models, provided LHE information is accessible

• Helicity-summed reweighting preserves the possibility of 

in-experiment reinterpretation 

• No longer bound to initial choice of model?

• need to keep LHE information from the events in SR 

• Persistency is important 

• If non-zero signal: Need to solve background correlations as triangular matrix

• We will need Multi-differential high-dimensional SM-EFT analysis of candles

HELICITY-SUMMED REWEIGHTING

17

ttbar

H→WW

https://arxiv.org/pdf/1607.00763.pdf


A. Suggest comparative study of all approaches (& aware of STXS parametrisation)

B. Analysis persistency for later reinterpretation – tools, practises, shortcomings

• Are we ready for an excess?

C. Best practices for publication of ML results 

• proposal [Publishing statistical models: Getting the most out of particle physics experiments, 2109.0491]

POSSIBLE ACTION ITEMS / CONCLUSION

18

Sample based Event based 

(per hel.)

Event based

(summed hel.)

Persistency 1 sample per term 1 number per 

event & term

1 number per 

event & term

Madgraph

reweighting

None

Phase space 

mismatches?

No problem May require c≠0 May require c≠0

(fewer cases)

Can be staged? Yes, including hel. No new hel. Yes, including hel.

ML sample 

efficient?

Less so Yes Yes

https://arxiv.org/pdf/2109.04981.pdf


PER-SAMPLE VS REWEIGHTING – LOSS FUNCTIONS

19



DISENTANGLING SM-EFT IN THE HIGGS-SECTOR
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Higgs – Boson couplings Higgs – Fermion 

couplings
Higgs – Boson 

loop induced

𝜏

𝜏

6.3%0.23%0%
b

b

58%0.15%2.6%21%
𝛍

𝛍

0.02%decay:

45 pb gluon fusion

3.5 pb vector-boson

fusion

1.2 pb associate W

0.5 pb ttH

Higgs production

modes with their 

SM-EFT couplings



THE HIGGS IN THE GOLDEN CHANNEL
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EPJC 80 (2020) 957

𝜏

𝜏

6.3%0.23%0%
b

b

58%0.15%2.6%
𝛍

𝛍

0.02%

• example #1:  ZZ* decay channel in all production modes

• experimentally clean (“golden channel”) 

• 10 = 5 (+5 CP odd) operators: cHW, cHB, cHW, cuH, cHWB

• attempt to optimally disentangle production modes

21%decay:

H → ZZ* → 4l

https://arxiv.org/pdf/2004.03447.pdf


• Reconstructed bins contain a mixture of  production channels and backgrounds (mostly ZZ*)

• ML is used to separate production modes in each category

• per reco-channel: NNs trained with 2-7 observables 

• combine with RNNs (LSTMs) using variable-length jets and leptons

• common network layer for multiclassification in e.g., ggF, VBF, ZZ*

22

THE HIGGS IN THE GOLDEN CHANNEL EPJC 80 (2020) 957

RNNMLP RNN

MLP

https://arxiv.org/pdf/2004.03447.pdf


Log-likelihood ratio 

test statistic

23

THE HIGGS IN THE GOLDEN CHANNEL EPJC 80 (2020) 957

Likelihood = prod. of Poissonians auxiliary measurements

(profiled, to deal with

nuisances)

https://arxiv.org/pdf/2004.03447.pdf


Log-likelihood ratio 

test statistic

24

THE HIGGS IN THE GOLDEN CHANNEL EPJC 80 (2020) 957

Likelihood = prod. of Poissonians

signal-strength

modifiers

defined at the

fiducial level

production decay acceptance

universal!

auxiliary measurements

significant interplay of production and decay effects

learn “only” the likelihood ratio of different SM production modes

(profiled, to deal with

nuisances)

https://arxiv.org/pdf/2004.03447.pdf


• use ML for separating CP-even vs. odd effects 

• gradient-BDT  XGBoost

• 38 input features (kinematic properties)

TTH IN THE MULTILEPTON CHANNEL

25

JHEP (submitted)

𝜏

𝜏

6.3%0.23%0%
b

b

58% 0%0.15%2.6%
𝛍

𝛍

0.02%

• example #2: t(t)H multilepton in 2ℓSS+0𝜏, 2ℓSS+1𝜏, 3ℓ final states

• 3 DNNs for signal/background multi-classification

• targets t-t-H Yukawa coupling (   ) in 𝜅-framework

• in SM-EFT: “CP” structure (complex phase) of 

21%decay:

ttH multilepton

+ 37 other

observables

https://xgboost.ai/
https://arxiv.org/abs/2208.02686


• example of learning “of” SM-EFT effects

• issue: large top backgrounds from ttZ and ttW in all 

measurement regions → combine sectors!

• 𝜏 lepton ID performance has significant impact

TTH IN THE MULTILEPTON CHANNEL
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• BDT exploits the likelihood  trick to obtain 

CP even/odd fraction from the data 

• limits on deviations of the t-t-H interaction (      ,      )

including combinations with other final states

ttH multilepton

JHEP (submitted)

https://arxiv.org/abs/2208.02686


RECENT SM-EFT RESULTS (SELECTION!)
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4l JHEP 07 (2021) 005

H→4l EPJC 80 (2020) 957

H→4l PRD 104, 052004 (2021) EPJC 81 (2021) 200

ATL-PHYS-PUB-2021-010

W±W∓

PRD 102, 092001 (2020)
arxiv:2202.00487

resolved EPJC 81 (2021) 178 

boosted PLB 816 (2021) 136204

W±W∓ (+ ≥ 1 jet) VBF Z + jj WZ Wɣ

EPJC 81(2021)163 

JHEP 06 (2021) 003

PRD102, 092001 (2020)
CMS-SMP-20-0014

PRD sub. 

CMS-SMP-20-005

W/Z+H (H→bb)

H→WW, e𝛍
EPJC 82 (2022) 622

H→ɣɣ H→W*W W±W∓H→Z*Z ZZ

PRD 97 (2018) 032005

https://link.springer.com/article/10.1007/JHEP07(2021)005
https://arxiv.org/pdf/2004.03447.pdf
https://arxiv.org/abs/2104.12152
http://dx.doi.org/10.1140/epjc/s10052-020-08817-8
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-010/
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092001
https://arxiv.org/pdf/2202.00487.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-51/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-52/
https://link.springer.com/content/pdf/10.1140/epjc/s10052-020-08734-w.pdf
https://inspirehep.net/files/4009f5ceba17b02143540efdd4dc0769
https://arxiv.org/pdf/2009.00119.pdf
https://arxiv.org/abs/2110.11231
https://arxiv.org/abs/2111.13948
https://link.springer.com/article/10.1140/epjc/s10052-022-10366-1
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.032005


RECENT SM-EFT RESULTS (SELECTION!)
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4l JHEP 07 (2021) 005 ATL-PHYS-PUB-2021-010

W±W∓ (+ ≥ 1 jet) VBF Z + jj WZ WɣW/Z+H (H→bb)

ZZ H→ɣɣ H→W*W W±W∓H→Z*Z

+CP odd

aTGC

+CP odd +CP odd

HC framework

CP even/odd

(OHW, OHB + CP odd)

+CP odd

H→4l EPJC 80 (2020) 957

H→4l PRD 104, 052004 (2021) EPJC 81 (2021) 200

W±W∓

PRD 102, 092001 (2020)
arxiv:2202.00487 H→WW, e𝛍

EPJC 82 (2022) 622

PRD 97 (2018) 032005

resolved EPJC 81 (2021) 178 

boosted PLB 816 (2021) 136204 EPJC 81(2021)163 

JHEP 06 (2021) 003

PRD102, 092001 (2020)
CMS-SMP-20-0014

PRD sub. 

CMS-SMP-20-005

https://link.springer.com/article/10.1007/JHEP07(2021)005
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-010/
https://arxiv.org/pdf/2004.03447.pdf
https://arxiv.org/abs/2104.12152
http://dx.doi.org/10.1140/epjc/s10052-020-08817-8
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092001
https://arxiv.org/pdf/2202.00487.pdf
https://link.springer.com/article/10.1140/epjc/s10052-022-10366-1
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.032005
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-51/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-52/
https://link.springer.com/content/pdf/10.1140/epjc/s10052-020-08734-w.pdf
https://inspirehep.net/files/4009f5ceba17b02143540efdd4dc0769
https://arxiv.org/pdf/2009.00119.pdf
https://arxiv.org/abs/2110.11231
https://arxiv.org/abs/2111.13948


TOP AND DIBOSON SECTORS
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ttW

0.55 pb

ttɣ

0.80 pb

tɣq

0.4 pb

tttt

0.009 pb

W±W∓

EWK 10 fb

W±W±

EWK 4 fb

WZ

EWK 2.15 fb

ZZ

EWK 0.82 fb

Wɣ

EWK 20.4 fb

Zɣ

EWK 7.8 fb

Z 

EWK 37.4 fb

tt

811 pb

t (t-channel)

217 pb

tW

72 pb

t (s-channel)

10 pb

ttZ

1 pb

tZq

0.088 pb



SM-EFT EFFECTS ARE EVERYWHERE

• Solve background correlations like a triangular matrix (i.e. staged): 

• Multi-differential high-dimensional SM-EFT analysis of candles: 

• Drell-Yan, W+Jets, ttbar, single-top (t), etc. 

• Then move to  ZH (+ Drell-Yan), WH (+ttbar), H→WW  (+WW and ttbar)

• Can go in parallel provided re-interpretation is feasible

• Needs close-to complete likelihood → a whole separate discussion

• ML versatile tools to optimally extract SM-EFT effects without too 
much tuning need → parametrized classifiers are an example

30

ZZ (VBF)

Drell-Yan

ttbar

tt+Z

H→WW



TREES & BOOSTING

• Let us make a tree-based ansatz for the differential cross-section ratio R

• The “weak learner” is a tree  associating a sub-region (j) of a partitioning 𝒥 with a  predictive function Fj

• Fitting tree: Optimize ”node split positions” on some loss. Trained (e.g. greedily) on the ensemble.

• An axis-aligned tree is limited. Remove the limitation iteratively with “boosting”.
32

cut on x1

cut on x2

cut on x1 again etc.

F…

F1 F2

training phase:

e.g. “CART” algo

phase space

partitioning J
prediction Fj

need to solve for partitioning J and {Fj}

index-function (non-linearity)

weak learner

x1

x2

F1 F2 F3

F4 F5

F7
F6

F8

phase-space partitioning

[arXiv:2107.10859, arXiv:2205:12976]

https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf


LEARNING MORE WITH TREES

33

Regress in R,  including its the polynomial 𝛉 dependence

Tree ansatz for each a, ab:
Fj(𝛉) polynomial with const. coeff.

(per node) 

Solve for optimal partitioning with greedy CART algorithm

split only if 

wj(𝛉) is positive ∀𝛉
We’ll find an optimized tree.

→ boost

[arXiv:2107.10859, arXiv:2205:12976]

→ will allow to compute the

optimal LLR test statistic q(𝒟)

Solve for the predictor on the empirical 

distribution (simulated sample)

find optimal 

partitioning

find optimal 

predictor

No trainable parameters in the predictor

https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf


CONCRETE SOLUTION: TREE BOOSTING

• Boosting: Fit linear model iteratively to pseudo-residuals of the preceding iteration with learning rate η

• Ansatz :

• Insert into the loss function:

34

previous iteration current iteration

pseudo-residual, amounting

to event-leve reweighting

current 

iteration

current

iteration

previous

iteration

…. perform this iteratively

[arXiv:2107.10859, arXiv:2205:12976]

https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf


NEURAL NETWORKS REGRESS; THE BIT DOESN’T

35

• Each NN layer maps Ln+1 = σ(Wij Ln + bi ). These DOF need to select & predict the regressed values.

• In the BIT, we only select. The prediction (Fj) is computed from the boxed events. This is possible,

because a tree algorithm is (greedely) trained on the ensemble. The BITs’ DOF are NOT updated  event-by-event.

(do not take 

too literally)NNs per layer

BIT per depth

Fj known

(quite litarally 

what is happening)
→ fewer DOF need regressing



HOW TO PARAMETRIZE?

• Quantum field theory: Differential cross section predict polynomial SM-EFT dependence:

• additivity of the matrix element → incur a simple (polynomial) dependence in 𝛉 for fixed configuration z

36

probability = wave function, squared

• Neyman-Pearson: 

Optimality can be achieved with cross-section ratio R or its

universal coefficient functions Ra, Rab

NB #2: R is positive: Fit universal dependence using

the most general quadratic polynomial

where

“normalization” “shape”

NB #1 Curse of dimensionality is lifted!!

15 operators → 136 coefficients



OPTIMAL PARAMETRIZED CLASSIFIERS 

• studied in the context of for the most important SM-EFT operators

37

• high purity, ~85%-90% as seen by  ATLAS and CMS (with SM-EFT)

• Adam optimizer, pytorch, 104 epochs, learning rate of  10-4

• 4 hidden layers á 32 nodes, 2 networks simultaneously trained

• alternatives configurations studied

• establish optimality with analytic model (Toy), very similar at (N)LOoptimality

JHEP 05 (2021) 247
ATLAS-CONF-NOTE-2016-043,

JHEP 07 (2022) 032
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http://cds.cern.ch/record/2206093
https://arxiv.org/pdf/2110.11231.pdf
https://arxiv.org/abs/2007.10356
http://cds.cern.ch/record/2206093
https://arxiv.org/pdf/2110.11231.pdf


PYTORCH IMPLEMENTATION

• ZH production, analytic model, 500k events

• Single coefficient: cHW

• 4 hidden layers á 32 nodes, 2 networks simultaneously trained

• 104 epochs, Adam optimizer, LR=10-4

• The training is simultaneous and it must be!

• Positivity is a property of the polynomial, 

not of an individual coefficient. 

• several options to emphasise the tails

• bias loss with function of A(x) or choosing base points

• just a proof of principle implementation

38

pT(V)

linear term

quadratic

term

R(pT≈500) = 1 + blue 𝛉 + red 𝛉2

S. Chen, A. Glioti, G. Panico, A. Wulzer

JHEP 05 (2021) 247

https://arxiv.org/abs/2007.10356


”PARTICLE PHYSICS STRUCTURE”
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based on this talk: C. Kranmer, J. Brehmer

K. Cranmer , J. Pavez , and G. Louppe [1506.02169] 

J. Brehmer, K. Cranmer, G. Louppe, J. Pavez [1805.00013] [1805.00020] [1805.12244]

J. Brehmer, F. Kling, I. Espejo, K. Cranmer [1907.10621]

Theory

parameters
Parton-level

momenta

Parton 

shower

Detector &

reconstruction
Observables

calcuable & re-calcuable

(aka tractable) theory prediction

Integration over 

intractable factors

• It’s somewhat of a miracle that one can regress on the observable-level likelihood ratio

superpowers

https://indico.cern.ch/event/945096/attachments/2092094/3516391/BSM-PANDEMIC-Mining-Gold-EFT-DM-2020-08-26_2.pdf
https://arxiv.org/pdf/1506.02169.pdf
https://arxiv.org/pdf/1805.00013.pdf
https://arxiv.org/pdf/1805.00020.pdf
https://arxiv.org/pdf/1805.12244.pdf
https://arxiv.org/pdf/1907.10621.pdf


”JOINT” DISTRIBUTIONS ARE MUCH SIMPLER

• To understand the power of simulation, look at the simpler “joint” pdf

1. The intractable factors cancel in the joint LR

2. Now fit a general function on the join space with a regressor depending only on the observables:

3. Now chose f(x,z) = r(x,z | 𝛉, 𝛉0) which is available in simulation & fit with expressive function:

40… statistical framework of all the parametrized classifiers

Change in likelihood of observation x 

(with history z) going from 𝛉0 to 𝛉
staged simulation:

Intractable factors cancel

Latent space is integrated 

Available from simulation

what we actually want:

change in likelihood of

a specific observation

re-calcuable

theory prediction



• Quantum field theory: Differential cross section have structure

• sampling z at a fixed 𝛉0

• evaluate dσ(𝛉) for sufficient number of base-points 𝛉

• fix polynomial coefficients of event weights wi(𝛉)

• obtain predictions for, e.g., yields for all x,z and 𝛉

EXPLOITING PARAMETRIZED SIMULATION WITH TREES

41

probability = 

wave function, 

squared

SM interference
pure

SM-EFT
interpretation

valid at LO
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• Quantum field theory: Differential cross section have structure

• sampling z at a fixed 𝛉0

• evaluate dσ(𝛉) for sufficient number of base-points 𝛉

• fix polynomial coefficients of event weights wi(𝛉)

• obtain predictions for, e.g., yields for all x,z and 𝛉
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probability = 

wave function, 

squared

SM interference
pure

SM-EFT
interpretation

valid at LO



TREES & BOOSTING

• Let us make a tree-based prediction for R or its coefficient function

• Weak learner: Tree ↔︎ Associates a predictive function Fj (flexible!) with a sub-region j of a 

partitioning

• Fitting tree: Optimize ”node split positions” on some loss. Trained (e.g. greedily) on the ensemble.

• Rectangular cuts are very limiting. Remove the limitation with “boosting”.
44

cut on x1

cut on x2

cut on x1 again etc.

F…

F1 F2

training phase:

e.g. “CART” algo

phase space

partitioning J
prediction Fj

need to solve for partitioning J and {Fj}

index-function (non-linearity)

weak learner

x1

x2

F1 F2 F3

F4 F5

F7
F6

F8

phase-space partitioning

[arXiv:2107.10859, arXiv:2205:12976]

https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf


CONCRETE SOLUTION: TREE BOOSTING

• Boosting: Fit linear model iteratively to pseudo-residuals of the preceding iteration

• Ansatz :

• Insert into the loss function:

45

previous iteration current iteration

pseudo-residual

current 

iteration

current

iteration

previous

iteration

reweighting

MSE structure at iteration b

…. perform this iteratively

[arXiv:2107.10859, arXiv:2205:12976]

https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf


TOP AND DIBOSON SECTORS
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ttW

0.55 pb

ttɣ

0.80 pb

tɣq

0.4 pb

tttt

0.009 pb

W±W∓

EWK 10 fb

W±W±

EWK 4 fb

WZ

EWK 2.15 fb

ZZ

EWK 0.82 fb

Wɣ

EWK 20.4 fb

Zɣ

EWK 7.8 fb

Z 

EWK 37.4 fb

tt

811 pb

t (t-channel)

217 pb

tW

72 pb

t (s-channel)

10 pb

ttZ

1 pb

tZq

0.088 pb


