

Institut de recherche en mathématique et physique Centre de Cosmologie, Physique des Particules et Phénoménologie

Reweighting of MC sample

Olivier Mattelaer

Motivation

Motivation

Re-Weighting

- Reuse the sample (Only one Full Sim)
- Change the weight of the events

$$W_{new} = \frac{|M_{new}|^2}{|M_{old}|^2} * W_{old}$$
 1405.0301
1404.7129

Re-Weighting usage

- scale and pdf uncertainties (available both for LO and NLO computation)
- re-introduce top mass effect for Higgs processes
- EFT scan
- Many other application

Examples EFT

Re-Weighting Limitation

- statistical uncertainty are enhanced by the reweighting
- better to have wgt<1 and small variance

Re-Weighting Limitation

- statistical uncertainty are enhanced by the reweighting
- better to have wgt<1 and small variance

Re-Weighting Limitation

- statistical uncertainty are enhanced by the reweighting
- better to have wgt<1 and small variance

• You need to have the same phase-space (more exactly a subset)

Caution

LHE Additional information

Helicity

Leading color information

Intermediate particle

Caution

LHE Additional information

Helicity

- Partial helicity distribution are not correct with the full re-weighting
- Solution $W_{new} = \frac{|M_{new}^h|^2}{|M_{orig}^h|^2} W_{orig},$
- This is done by default !

Leading color information

Intermediate particle

Caution

LHE Additional information

Helicity

- Partial helicity distribution are not correct with the full re-weighting
- Solution $W_{new} = \frac{|M_{new}^h|^2}{|M_{orig}^h|^2} W_{orig},$
- This is done by default !

Leading color information

modify the parton-shower so not suitable.

Intermediate particle

modify the parton-shower so not suitable.

GPU

- Reweighting are massively repetitive task
- Ideal for GPU
 Zenny Wettersten
- We are in need of real experimental test case
 - Number of event in sample
 - Number of benchmark

NLO Re-Weighting

NLO method

 tracks the dependencies in the various matrixelements (born, virtual, real)

$$d\sigma^{\alpha} = f_1(x_1, \mu_F) f_2(x_2, \mu_F) \left[\mathcal{W}_0^{\alpha} + \mathcal{W}_F^{\alpha} \log \left(\mu_F / Q \right)^2 + \mathcal{W}_R^{\alpha} \log \left(\mu_R / Q \right)^2 \right] d\chi^{\alpha},$$

$$\mathcal{W}^{\alpha}_{\beta} = \mathcal{B} * \mathcal{C}^{\alpha}_{\beta,B} + \mathcal{B}_{CC} * \mathcal{C}^{\alpha}_{\beta,B_{CC}}$$

$$+ \mathcal{V} * \mathcal{C}^{\alpha}_{\beta,V} + \mathcal{R} * \mathcal{C}^{\alpha}_{\beta,R}$$

re-weight each part according to the associated matrix-element

$$egin{aligned} &\mathcal{W}^{lpha,new}_{eta,B} = rac{\mathcal{B}^{new}}{\mathcal{B}^{old}} * \mathcal{W}^{lpha,old}_{eta,B}, \ &\mathcal{W}^{lpha,new}_{eta,V} = rac{\mathcal{V}^{new}}{\mathcal{V}^{old}} * \mathcal{W}^{lpha,old}_{eta,V}, \ &\mathcal{W}^{lpha,new}_{eta,R} = rac{\mathcal{R}^{new}}{\mathcal{R}^{old}} * \mathcal{W}^{lpha,old}_{eta,R}. \end{aligned}$$

NLO ISSUE

- MadGraph use some phase-space trick to avoid to compute the loop as much as possible (and replace it by the born)
 - Need smarter/complex re-weighting

NLO Re-Weighting

Conclusion

- Re-using previous generation/computation is always a smart move.
- This methods is fully exact but not bullet proof
 - Need to check overlap of phase-space/helicity
 - not (really) suitable for mass scanning
 - helicity (need to be careful)
 - leading color information
 - intermediate particle
- NLO is ready
 - Same limitation
 - Issue with numerical precision

Why it works

Why it works

unweighting case

helicity case

$$\sigma_{orig} = \sum_{i=1}^{N} W_{orig}^{i} P_{h,orig}^{i},$$
$$= \sum_{i=1}^{N} W_{orig}^{i} \frac{|M_{orig}^{h}|^{2}}{\sum_{\tilde{h}} |M_{orig}^{\tilde{h}}|^{2}},$$

$$\begin{split} \sigma_{new} &= \sum_{i=1}^{N} W_{new}^{i} P_{h,new}^{i}, \\ &= \sum_{i=1}^{N} W_{new}^{i} \frac{|M_{new}^{h}|^{2}}{\sum_{\tilde{h}} |M_{new}^{\tilde{h}}|^{2}}, \\ &= \sum_{i=1}^{N} W_{orig}^{i} \frac{\sum_{\tilde{h}} |M_{new}^{\tilde{h}}|^{2}}{\sum_{h'} |M_{orig}^{h'}|^{2}} \frac{|M_{new}^{h}|^{2}}{\sum_{\tilde{h}} |M_{new}^{\tilde{h}}|^{2}}, \\ &= \sum_{i=1}^{N} W_{orig}^{i} \frac{1}{\sum_{h'} |M_{orig}^{h'}|^{2}} \frac{|M_{new}^{h}|^{2}}{1}, \\ &= \sum_{i=1}^{N} W_{orig}^{i} \frac{|M_{orig}^{h'}|^{2}}{\sum_{h'} |M_{orig}^{h'}|^{2}} \frac{|M_{new}^{h}|^{2}}{|M_{orig}^{h}|^{2}}, \\ &= \sum_{i=1}^{N} W_{orig}^{i} \frac{|M_{orig}^{h'}|^{2}}{|M_{orig}^{h'}|^{2}} \frac{|M_{new}^{h}|^{2}}{|M_{orig}^{h'}|^{2}}. \end{split}$$