Area 1 targets – EFT formalism –

Ilaria Brivio

for the Area 1 conveners: IB, Gauthier Durieux, Matteo Presilla, Giovanni Petrucciani (stepping out)

ALMA MATER STUDIORUM Università di Bologna

Proposals for future Area 1 activities

- 1. [ongoing] Parameter counting for benchmark flavor scenarios → with Areas 3+6, building on discussion at flavor meeting indico.cern.ch/event/1096487 → will be presented in more detail soon, once note is ready
- 2. Benchmarking of proposed truncation/uncertainty prescriptions

 \rightsquigarrow with Area 4 (fitting ex.), Tisa's talk

- 3. Database of notation/basis conversions between tools and existing results → with Area 2
- 4. Validation of NLO predictions and tools

 \rightsquigarrow with Area 2

- 5. Survey of unitarity and positivity bounds to ease comparison with measurements and potentially incorporation in fits
- 6. SMEFT/HEFT parameterizations for HH with the long-term goal of enabling consistent H + HH combinations

→ Jannis' talk

... more ideas? requests?

Ilaria Brivio (UZH & UniBo)

Area 1 targets - EFT formalism

Benchmarking of truncation/uncertainty proposals

Why?

- discussion about how to assess EFT validity, account for $d \ge 8$ effects etc.
 - 5 proposals received so far: A,B,C,D discussed at previous mtgs + Tim's proposal this morning (E)
- WG did not formulate recommendations. proposals collected in a **note** on arXiv (kept up-to-date): 2201.04974
 → main ideas and pros & cons
- case studies with concrete examples missing (realistic fits, example UV scenarios...)

 \rightarrow benchmark the proposals (and variants) within the Area 4 fitting exercise

Benchmarking of truncation/uncertainty proposals

How?

[all "How?"'s are very preliminary!]

performing the fitting exercise with different setups and compare. e.g.:

- linear and linear+quadratic, including all bins
- clipping: removing highest bins, moving the cut (A,B,D)
 [variants: truncating data/prediction, removing/damping/capping EFT contribution...]
- ▶ incl. truncation uncertainty in fit, varying size and nuisance parameterization (C)

Database of notation/basis conversions

Why?

- diverse tools used by experiments to set limits on EFT operators, anomalous couplings, κ 's... in many analyses
- useful to recast some simulations or limits in terms of SMFFT
- requires mapping parameters onto common setups (basis, normalization etc.) correspondence sometimes non-obvious, must be re-derived each time
- \rightarrow derive, validate and make publicly available once and for all

How?

dynamic twiki page or similar where conversions are uploaded and/or implementation of translations in available tools

WCxf 1712 05298

github.com/SMEFTsim/UFO-validation

- a validation/approval step should be implemented
- not planning to enforce one common format for now. different solutions might be more appropriate for different cases, eg. param_cards, scripts, analytic tables...

LPCC Validation note 1906.12310 C conversion between SMEFT UFOs already available

Ilaria Brivio (UZH & UniBo)

Area 1 targets - EFT formalism

Validation of NLO predictions and tools

Why?

- Extension of the validation effort from 2019 LPCC note 1906.12310
- Long term: in order to adopt 1-loop (QCD+EW) predictions in SMEFT global fits, consistency in assumptions and conventions must be ensured
- Shorter term: important to keep track of conventions going into results derived with different tools and/or by different theory groups
 → understand potential differences, estimate associated theory uncertainties

Define validation/comparison procedures for NLO SMEFT predictions from MC generators, other tools and/or analytical results

How?

- Can start by surveying existing generators/tools/results, tabulating conventions.
- Comparison most easily done numerically.
 Could be done at individual phase-space points, as for LO.
 Could be done evaluating only amplitude (coefficients of 1/ε powers)
- Eventually set up some validation code, to streamline comparisons

Unitarity and positivity bounds

Why?

- Theory considerations limit physical parameter space
 - \rightarrow perturbative unitarity violated at high *E* if C/Λ^2 too large $\Rightarrow C(E^2/\Lambda^2) < X$

→ physical amplitude properties (analyticity, causality, crossing symmetry...) can further limit parameter space (e.g. C > 0) in practice: mostly applies to $d \ge 8$

- Often hard for non-experts to have a sense of where bounds lie
- ► Unclear how to account for constraints in fits → minimal: comparison a posteriori

How?

- Make results available in a twiki/database, in form of inequalities and/or code
- Use as much as possible a unified notation

EFT parameterizations of HH

Why?

figures from: CMS Nature 607(2022)60

Experimental HH measurements currently in terms of (a subset of) κ 's

Well-known that large cancellations between diagrams play a big role:
 eg. assuming κ_V = κ_t = κ_λ = 1, CMS excludes κ_{2V} = 0 at 6.6σ from μ_{HH} < 3.4

- \rightarrow a **global analysis** could be interesting (currently 1D/2D)
- \rightarrow several κ 's constrained in single H \rightarrow worth doing a H + HH simultaneous fit?

 \rightarrow promote SMEFT/HEFT parameterization of HH

EFT parameterization of HH

Main values

usual EFT advantages

gauge invariant, can be improved to NLO, accounts for all anomalous interactions, with and without Higgs. \ldots

long-term, from a combined fit:

- more reliable ranges for κ_{λ} , κ_{2V} $\mathfrak{O} \xrightarrow{} \kappa_{2V}$ most likely probed only from upper limits on VBF-HH also at HL-LHC
- explore interplay with $\kappa_{\lambda}, \kappa_{2V}$ in single-H at 1loop (and EWPO at 2loops)
- ▶ possibility to disentangle HEFT vs SMEFT analyzing relations among Htt ↔ HHtt, HVV ↔ HHVV, Hgg ↔ HHgg

How?

- A number of theory studies already present in the literature, some at NLO
- Discuss what would be relevant to implement for experimental studies: SMEFT/HEFT? which HH channels? which operators? ...
- More details of activity can be defined with HH subgroup of Higgs WG

 \rightsquigarrow dedicated note in preparation