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Goals

* Present scaling matrix approach for linear-in-amplitude EFT expansion
* Demonstrate useful EFT fit speedup opportunity

* Suggest a systematic approach to splitting existing binning (such as STXS)
towards better sensitivity
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Scaling matrix

* Linear-in-amplitude parameterization of a differential cross section

_ %(x, ¢) = | cpag®) + ¢y (%) + -+ 2 = eTa*(x)a (X)e

- For parameter vector ¢, amplitude vector a as a function of phase space point x
- This can be rewritten to be real-valued: A(x) = (a*a’ +aa™")/2

 So it is a matrix norm:

d
—a(x, ¢) =c'A(x)c
dx

- A is computed per event with usual tricks (MG reweighing) and is rank <= 2
* Integrate over some region to get a bin yield y

y=c' <L[ e(x)A(x)dx> c=c'Mc
X

- For luminosity L, efficiency ¢, neglecting smearing (does not change picture)

- A continuous in x, so rank(M) will grow as region grows
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What good is that?

* Alinear-in-amplitude dim-6 SMEFT parameterization then becomes:

T -

Y =YsMm (1 + Z ciA; + Z CiCjBij) & Y=YSMm

]

- Easy to check pos-def
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* When rank(M) < n (# coefficients) we can speed up interpolation in fits
- Precompute eigendecomposition and keep top k rows M},ﬁz = (QAY 2):k per bin

4

- Theny ~ |M:1,£20 |2, which is O(kn) instead of O(n2)
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Event

Quick check

* Simulate Z(ee,vv)H production with SMEFTsim
- With linearized propagator correction, patch to restrict all coupling orders <=2
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» Thanks to M. Knight

- Calculate per-event scaling matrix for 25 NP operators with nonzero effect (+1 for SM)
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Rank goes up with inclusivity, still << 26
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What this looks like in a fit

* The binned likelihood is approximately

Vpops — € M, c)
2L~ Y Yb.ob ) ’
b %p

 The Fisher information matrix is then*

4

1o = zb“g—%(Mbc)(Mbc)T

- Note: not constant, unlike for linear cross section expansion

- Of course, we are really interested in the 1:n submatrix since ¢y = 1 (SM)

* rank(M) is telling us how much coefficient-dependence is projected out
- Split bin into sub-bins of lower rank that are “orthogonal” =» more information (but o up)

* Assuming regularity conditions, e.g. domain of y independent of ¢
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Squeezing information out

 Splitting a bin: need definition of “orthogonal”
- At SM expectation (¢ = [1,0,...]), find vectors M, ., , with low inner product
- Can also just take Frobenius product
M My) = w(MM)
« Dominated by interference terms anyway (1/A2)
 Value in optimizing | for BSM points?
* Cluster same ZH events using Frobenius product as distance metric

- Use direction rather than distance, i.e. inner product / sqrt(norms)
- Simple k-means for now

« Categories are lower rank!
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Towards observables

* Great, but scaling matrices are not observable
* What can identify clusters?

-ZpT©

- Incoming parton flavor &

* Next step: train NN on observables to separate

- Supervised on cluster? Contrastive loss? Information matrix as loss (a la INFERNO)?
 Early tests with the latter show promise
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Summary

* | think this is a new way to look at linear-in-amplitude EFT expansion
- Unlocks a lot of linear algebra stuff
* Alternative to optimal observables approach

- Start from inclusive binning and divide up
- vS. learning unbinned likelihood ratio

* |f all that fails, at least it allows us to run fits faster
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