

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Area 3 targets

Experimental Measurements and Observables

Anke Biekötter for Area 3

5th General Meeting of the LHC EFT Working Group 2nd December 2022 Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Area 3 initial targets

Area 3 note

Anke Biekötter for Area 3

3. Experimental measurements and observables

How observables relate to operators, which measurements are important for a given operator or set of operators, differential/fiducial measurements vs. dedicated ones, identification of optimal observables, machine learning, re-interpretation vs. static, presentation of results: covariance, multi-D likelihood, etc., compatibility with global fits (i.e. assumptions used in deriving measurement and reporting results).

- Study observable, channel, process sensitivities and complementarities (***)
 - Experimental targets: survey of the sensitive channels and corresponding Ο operators
 - Differential distributions, optimal observables, including machine learning, and 0 dedicated EFT measurements, spin density matrices, EFT-optimized fiducial regions, amplitude analyses, angular distributions (e.g. for CP), pseudo observables, etc.
 - Agreement across experiments (for fiducial regions in particular) Ο
 - What observables are most sensitive to new physics? Exploit energy growing 0 effects, non-interferences, and other TH knowledge
 - Expected uncertainties: sys. or stat. dominated Ο
- Analysis strategies & experimental outputs, also with a view at legacy measurements and their possible reinterpretation (***)
 - Dedicated EFT extractions by collaborations 0
 - Differential measurements and the best choice of observables for re-0 interpretation.
 - Presentation of measurements: cross sections, correlations/covariance, multi-D Ο likelihood, etc...
 - Experimental systematics related to EFT (e.g. accounting for detector effects) Ο
 - Detector effects: unfolding, forward folding, efficiency maps, recasting through Ο reweighting, etc.
 - EFT in backgrounds: final-state driven instead of sig-bgd, statistical model (***) Ο

Area 3 initial targets

Anke Biekötter for Area 3

3. Experimental measurements and observables

How observables relate to operators, which measurements are important for a given operator or set of operators, differential/fiducial measurements vs. dedicated ones, identification of optimal observables, machine learning, re-interpretation vs. static, presentation of results: covariance, multi-D likelihood, etc., compatibility with global fits (i.e. assumptions used in deriving measurement and reporting results).

- Study observable, channel, process sensitivities and complementarities (***)
 - Experimental targets: survey of the sensitive channels and corresponding Ο operators
 - Differential distributions, optimal observables, including machine learning, and Ο dedicated EFT measurements, spin density matrices, EFT-optimized fiducial

Future targets?

stributions (e.g. for CP), pseudo

ial regions in particular) new physics? Exploit energy growing knowledge inated

so with a view at legacy measurements

and their possible reinterpretation (***)

- Dedicated EFT extractions by collaborations Ο
- Differential measurements and the best choice of observables for re-0 interpretation.
- Presentation of measurements: cross sections, correlations/covariance, multi-D Ο likelihood, etc...
- Experimental systematics related to EFT (e.g. accounting for detector effects) Ο
- Detector effects: unfolding, forward folding, efficiency maps, recasting through Ο reweighting, etc.
- EFT in backgrounds: final-state driven instead of sig-bgd, statistical model (***) Ο

Area 3 targets - physics cases

- Build upon previous WG work identifying powerful observables
- Concrete physics cases to study which observables could improve global fits
 - e.g. by resolving blind directions

Area 3 targets - ML-optimised observables

- Concrete examples for how to use and combine ML-optimised observables in practise
 - e.g. pre-train ML models that could be handed to ATLAS/CMS
 - CP-odd sector might be interesting test case (small subset of operators)

[<u>Area 4</u>]

POSSIBLE ACTION ITEMS / CONCLUSION

A. Suggest comparative study of all approaches (& aware of STXS parametrisation)

	Sample based	Event based (per hel.)	Event based (summed hel.)
Persistency	I sample per term	l number per event & term	l number per event & term
Madgraph reweighting	None	$W_{new} = \frac{ M_{new}^h ^2}{ M_{orig}^h ^2} W_{orig}$	$W_{new} = \frac{ M_{new} ^2}{ M_{orig} ^2} W_{orig}$
Phase space mismatches?	No problem	May require c≠0	May require c≠0 (fewer cases)
Can be staged?	Yes, including hel.	No new hel.	Yes, including hel.
ML sample efficient?	Less so	Yes	Yes

Analysis persistency for later reinterpretation – tools, practises, shortcomings Β.

- Are we ready for an excess?
- Best practices for publication of ML results С.
 - proposal [Publishing statistical models: Getting the most out of particle physics experiments, <u>2109.0491</u>]

[Robert's talk]

More area 3 targets

- Concrete physics cases to study which observables could improve global fits
 - e.g. by resolving blind directions
- Concrete examples for how to use and combine ML-optimised observables in practise • e.g. pre-train ML models that could be handed to ATLAS/CMS

 - CP-odd sector might be interesting test case (small subset of operators)
- Observables database matching area 2 proposal (observables, overlaps) |Area 2|
- Energy-dependent operators
- NLO electroweak predictions (differential) push for automatisation

More area 3 targets

- Concrete physics cases to study which observables could improve global fits
 - e.g. by resolving blind directions
- Concrete examples for how to use and combine ML-optimised observables in practise • e.g. pre-train ML models that could be handed to ATLAS/CMS

 - CP-odd sector might be interesting test case (small subset of operators)
- Observables database matching area 2 proposal (observables, overlaps) |Area 2|
- Energy-dependent operators
- NLO electroweak predictions (differential) push for automatisation

More to add?

