Top EFT fit: ATLAS+CMS

Baptiste Ravina (University of Göttingen) Kirill Skovpen (Ghent University)

LHC EFT WG meeting

2022/12/02

EFT in top sector

- Very rich in terms of potential new physics contributions
- Strong synergy with EW and Higgs sectors
- Combine ATLAS and CMS results at differential (unfoldEFT) and reconstruction (recoEFT) levels within LHCtopWG
- ◆ Use SMEFTsim; (m_W, m_Z, G_F); topU31
- Consider a single insertion of an EFT operator
- Focus on 9 EFT operators that appear in the top EW processes (for now): C_{tG}, C^I_{tG}, C_{tW}, C^I_{tW}, C^I_{tW}, C^I_{tB}, C^I_{tB}, C¹_{HQ}, C³_{HQ}, C^A_{Ht}

Common MC samples

- A dedicated effort within LHCtopWG to produce common ttbar samples (Powheg+Pythia, Sherpa)
- Understand the differences in how we generate samples, study correlations, and eventually use these samples as **baseline** prediction

Vjets	0.5 ATLAS+CMS Preliminary	$\sqrt{s} = 12 \text{ TeV}$	Setting name	Setting description	CMS default	ATLAS default	Common Pwg+Py8 v0.1	Common Pwg+Py8 v2
/p/	ELHCtopWG		Рожнес					
dσ			qmass	top-quark mass [GeV]	172.5	172.5	172.5	172.5
10	0.3	CMS Data	twidth	top-quark width [GeV]	1.31	1.32	1.315	1.311
1			hdamp	first emission damping parameter [GeV]	237.8775	258.75	250	250
			wmass	W^{\pm} mass [GeV]	80.4	80.3999	80.4	80.4
		Common Shorpa	wwidth	W^{\pm} width [GeV]	2.141	2.085	2.11	2.085
	0.2		bmass	<i>b</i> -quark mass [GeV]	4.8	4.95	4.875	5.06
		3	Рутніа 8					
	0.1	_	3	Pythia 8 version	v240	v230	v240 (CMS)	v240 (CMS)
							v244 (ATLAS)	v244 (ATLAS)
	- E. L			Tune	CP5	A14	Monash	Monash-CMW
			PDF:pSet	LHAPDF6 parton densities to be used for proton beams	NNPDF31_nnlo	NNPDF23_lo	NNPDF23_lo	NNPDF23_lo
a					_as_0118	_as_0130_qed	_as_0130_qed	_as_0130_qed
Dat	1.05		TimeShower:alphaSvalue	Value of α_s at Z mass scale for Final State Radiation	0.118	0.127	0.1365	0.118
5	1		SpaceShower:alphaSvalue	Value of α_s at Z mass scale for Initial State Radiation	0.118	0.127	0.1365	0.118
M	0.95		MPI:alphaSvalue	Value of α_s at Z mass scale for Multi-Parton Interaction	0.118	0.126	0.130	0.130
	0.9		MPI:pT0ref	Reference p_T scale for regularizing soft QCD emissions	1.41	2.09	2.28	2.28
	0.85 4 5 6	7 8 9 10	ColourReconnection:range	Parameter controlling colour reconnection probability	5.176	1.71	1.80	1.80
	т 5 0							

- Sharing a common MadGraph configuration to produce SMEFTsim samples (up to parton and particle levels) for t(t)X processes with all EFT/SM weights included
- Validate the predictions based on events weights by using additional samples produced at a given EFT point
- Using these samples in both unfoldEFT and recoEFT studies
- Extending the validation of common MC samples to EFT studies in LHCtopWG

Unfolded measurements Image: Second state of the second state

EFT fit

#

2

Use unfolded differential ttZ cross sections measured by ATLAS and CMS

particle

HEPData

- A great flexibility for cross-experiment EFT studies with many results available in HEPData
- An established approach for a global EFT fit interpretations
- Background processes are subtracted under SM assumption
- A strong dependence of EFT interpretations on background predictions obtained from unfolded experimental results (there is no « background » when doing EFT!)
- Limited use for a proper **uncertainty correlation**

Full reco information

- Use measurements (ttZ, ttγ) with full
 information on all relevant processes
- Properly correlate systematic uncertainties
- Need a common statistical model for a combined ATLAS+CMS fit
- A simultaneous measurement of multiple processes using data from both experiments
- Problem: we do not possess a common format to systematically publish experimental results with full reconstruction information
- Important for analysis preservation, future global fits, and reinterpretations

Common fit model

- Understand differences in the **treatment** of nuisance parameters in ATLAS and CMS
- Define **correlated nuisances** among various systematic variations
- Serialization of fit models (e.g. **JSON** in **pyhf**)
- A dedicated effort by pyhf team to create a bidirectional **pyhf-combine** <u>converter</u>
- Independently <u>developed</u> and cross-validated as part of **Combine** for a **combine**→**pyhf** translation
- **Good agreement** for **simple** models

Common fit model

7

Common fit model

- Some differences observed when using complex models:
 ttZ (ATLAS) + ttγ (CMS)
- Generally reproducing **similar EFT sensitivities** with translated inputs, but needs further polishing for a perfect match
- Currently works with a full BB treatment of statistical uncertainties

 need to understand why BB-lite does not give identical results
- Good progress on matching minimization procedures in both tools
- A **prototype** for the first full reco ATLAS+CMS combinations

EFT parametrization

- Only likelihood scans are published for EFT results → non-trivial to combine (common systematic sources would be included multiple times)
- Derive a generator-level EFT parameterization and apply it in the bins of a reco-level observable (or cross section, if no corresponding observable is available at generator level)
- Such reweighing is only applicable to **simple** (one or two) kinematic variables
- Proposal: serialize to a bin-wise (and process-wise) EFT parameterization of event weights at reco-level and publish it to HEPData (e.g. as JSON, HDF5, etc.)

	bin pı	rocess	p_ctGRe	p_ctWRe	p_ctBRe	p_cHQ1	p_cHQ3	p_cHt	p_ctGIm	p_ctWIm	p_ctBIm	p_SM	
0	pt25to50	ttZ	0.955115	-16.318899	-24.368322	1.217147	0.593863	22.704371	7.287961	34.34906	19.959084	178.957741	
1	pt50to100	ttZ	1.049587	-2.443358	-7.818102	1.692363	-3.481057	14.057936	11.92833	43.699131	20.88683	77.626132	C
													1

Likelihood scans

Analysis preservation

- What is the best way to **preserve** an analysis from an **EFT** point of view?
- ◆ How to **publish** a **statistical model**? See, for example: <u>SciPost Phys. 12 (2022) 037</u>
- ◆ Unfolded differential measurements: can serve as a viable option in some cases → no information about backgrounds
- ◆ Inference-free likelihoods: encode primary data, background estimates, and uncertainty correlations; e.g. as machine-learning proxy (e.g. <u>DNNLikelihood</u>, <u>Inference-free</u>, <u>Tree boosting</u> etc.) → combinations based on likelihood scans are non-trivial
- ◆ Simplified likelihoods: approximation to a full likelihood → must use a Gaussian approximation for uncertainties (see talks by <u>N. Berger</u> and <u>N. Wardle</u>)
- ◆ Reco-level distributions / Full likelihoods: include full information about all processes and uncertainties → need to agree on common publication format and fitting tools; complexity of inputs