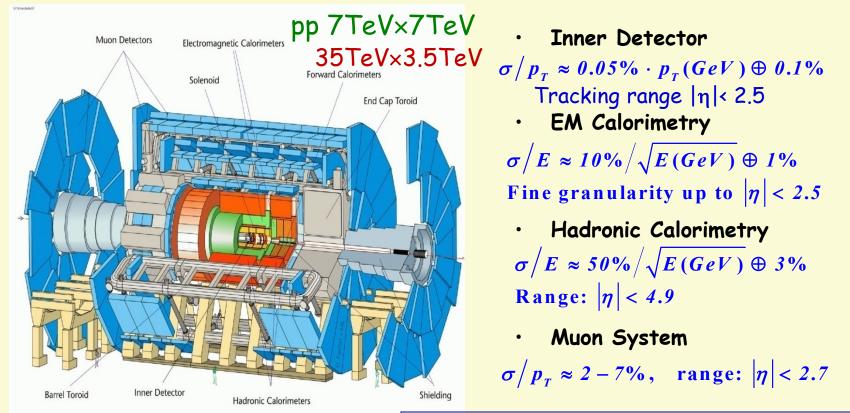
Experiment ATLAS/LHC and participation of Slovakia

Stanislav Tokár


Univerzita Komenského Fakulta matematiky, fyziky a informatiky Katedra jadrovej fyziky a biofyziky *Bratislava*

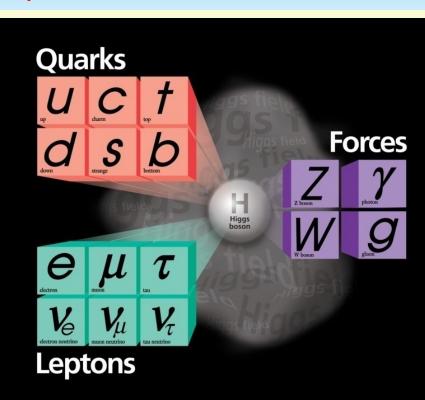
Outline

- Experiment ATLAS basic facts
- □ Why we need LHC
- Participation of Slovak teams in building of ATLAS
- On Kosice team ATLAS activities
- On Bratislava team ATLAS activities
- Outreach
- Conclusions

Detektor experimentu ATLAS

Multipurpose particle detector (coverage $|\eta|=5$, L=10³⁴ cm⁻²s⁻¹)

Magnetic field : 2T Solenoid + 3 air core toroids *start: autumn 2009* 27/05/2011 S. Tok Precision physics in $|\eta| < 2.5$ Lepton energy scale: 0.02% (Z \rightarrow II) Jet energy scale: 1.0% (W \rightarrow jj)


Why we need LHC: present staus

SM: full version - 25 (26) parameters

EWSB(E-W symmetry breaking): $SU(3)_{c}\otimes SU(2)_{L}\otimes U(1)_{Y}$ \rightarrow SU(3)_c \otimes U(1)_{OED}

EWSB consequences:

- <**√** <**∮**> ≠ 0
- \checkmark W, Z bosons: $M_W, M_7 \neq 0$
- ✓ leptons, and quarks: $m_{l,q} \neq 0$ ✓ Gluons a photons: m = 0

Higgs sector: 1 neutral Higgs boson H \rightarrow Higgs field $\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$ $V(\phi) = -|\mu^2||\phi|^2 + \lambda (|\phi|^2)^2$

Moment 1: Study of the symmetry breaking in Higgs sector 27/05/2011 S. Tokár, RECFA meeting Košice

V())

LHC: need to go beyond SM

Minimal SuSy extension of SM (MSSM): 19+105 parameters

Moment 2: in SM	SM		Spin	SUSY		Spin
✓ No candidate on dark matter ✓ $n_{\rm B}/n_{\gamma}$: Obs: 5.5×10 ⁻¹⁰ SM: < 10 ⁻²⁰	leptons quarks gluons EW bosons Higgs	$\ell, \ u_\ell \ q \ g \ \gamma, Z, W \ h, H, A, H^{\pm}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$ 1 1	sleptons squarks gluinos charginos neutralinos	$egin{array}{ccc} { ilde \ell}, \ { ilde u}_\ell \ { ilde q} \ { ilde g} \ { ilde \chi}_{1,2}^\pm \ { ilde \chi}_{1,2,3,4}^0 \end{array}$	$ \begin{array}{c} 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array} $

Lightest SuSy particle is stable: LSP = $\tilde{\lambda_1}$ (dark matter candidate)

Higgs sector
$$\phi_2 = \begin{pmatrix} \phi_2^+ \\ v_2 + \phi_2^0 \end{pmatrix}, \quad \phi_1 = \begin{pmatrix} v_1 + \phi_1^0 \\ \phi_1^- \end{pmatrix}, \quad \tan \beta = \frac{v_2}{v_1}$$

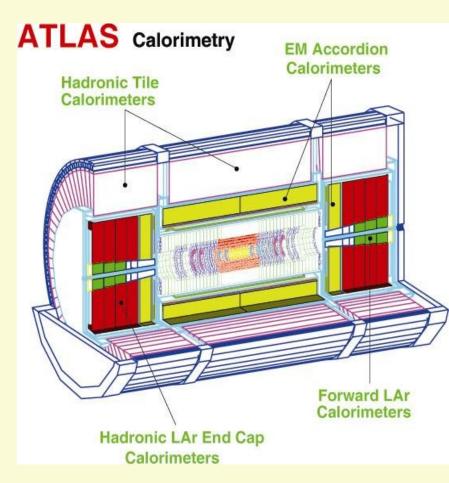
Physical Higgs bosons: h, H, A, H^{\pm} 2 vacuum expectation values $\neq 0$

xSec ~ $tan^2\beta$ enhanced: $fb \rightarrow pb$!

Construction and testing of ATLAS detector

Kosice team: Hadronic LAr End Cap calorimeter (HEC) based on liquid argon technology

> Bratislava team: Hadronic Tile calorimeter (Tile) - scintill. tiles +fibers


>Hardware:

✓ Development, production and tests of Forward readout board (with Columbia Univ.) (HEC)

✓Production of so-called cold electronics (HEC)

 \checkmark Iron plates for Tile calorimeter

 ✓ Angle bracket for tile modules manipulations

Both team: in assembling and commissioning of Calo's

27/05/2011

ATLAS group in Košice

Team: 5 physicists; 2 engineers, 1 PhD student, 3 technicians Basic topics:

In the past:

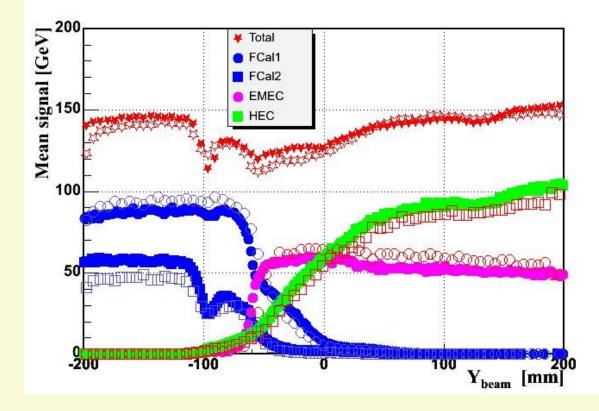
✓ study of HEC properties, cosmic runs analysis,...

 \checkmark analysis of data from the tests carried out in H6 channel in CERN

 \checkmark analysis of data from the high luminosity runs in Protvino

✓ commissioning of LAr Endcap calorimeter.

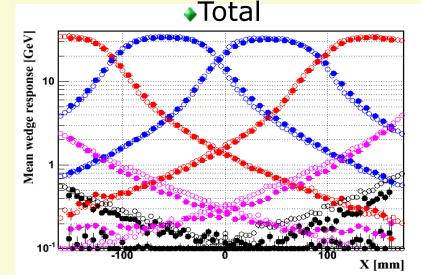
□ Now:

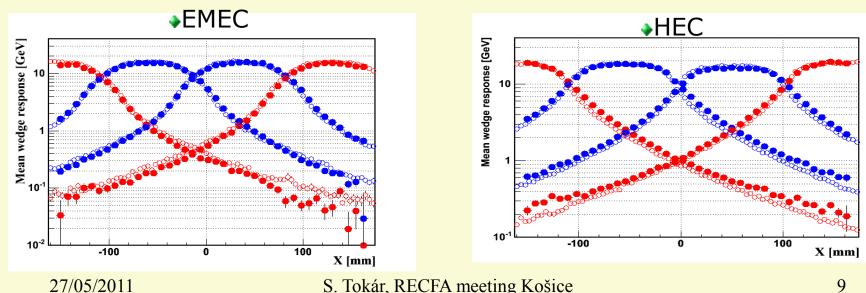

 \checkmark on-line calibration (LAr on-line calibration convenor is from KE team)

 \checkmark ATLAS shifts for data accumulation

✓ study of top/anti-top production in pp collision in dilepton channel
 ✓ electronics upgrade (ADC,...) for the ATLAS upgrade with a close collaboration with Columbia University.

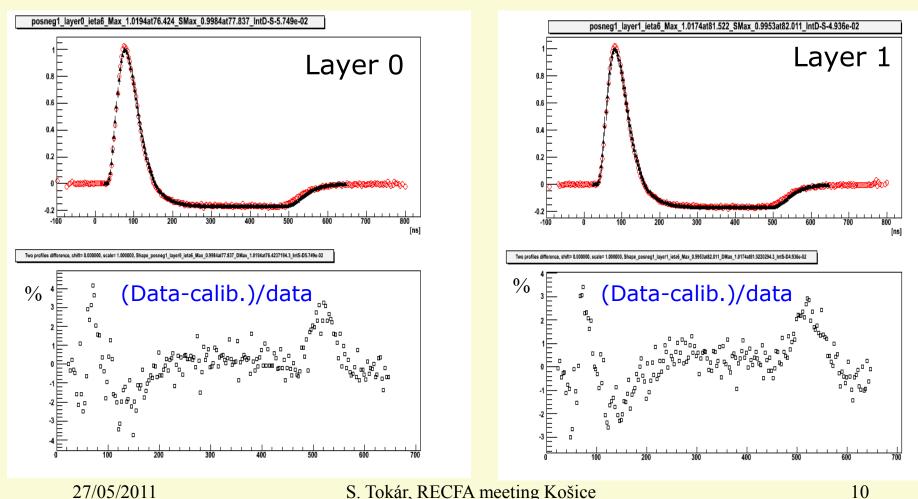
KE team: test beam data analysis

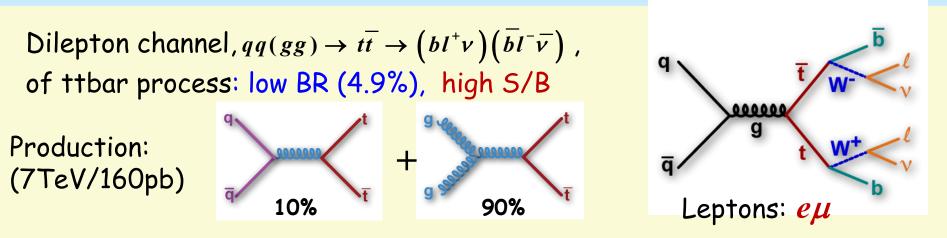

Study of the crack region using 200 GeV pions: ⇒comparing the test beam data with MC Data: full symbols, MC: empty symbols



KE team: test beam data analysis

Reconstruction of HEC response:


- ✓ incident pions, 60 GeV
- ✓ X-scan: 60 GeV pions over EMEC/HEC region (data = full, MC = open symbols)
- each profile is sum of energy in one phi-bin
- MC: QGSP_BERT code used for comparison with data



KE team: HEC signal shape

Cosmic muon tests were used to study HEC signal shape Layer 0 (left) and layer 1 (right) signal; red circles = data, black triangles = predictions from calibration

KE team: ttbar production in Dilepton channel

Kosice team: a lot of experience in dilepton studies from CDF \checkmark Top quark mass in DL channel using template approach + template method with cross section vs M_{top} \checkmark Ttbar spin correlations in DL channel \checkmark Top quark charge in DL channel

Present status:

Atlas soft handled – first ttbar dilepton distributions obtained aimed at top mass (template method) and analysis of W helicity states Effective contribution: autumn 2011

27/05/2011

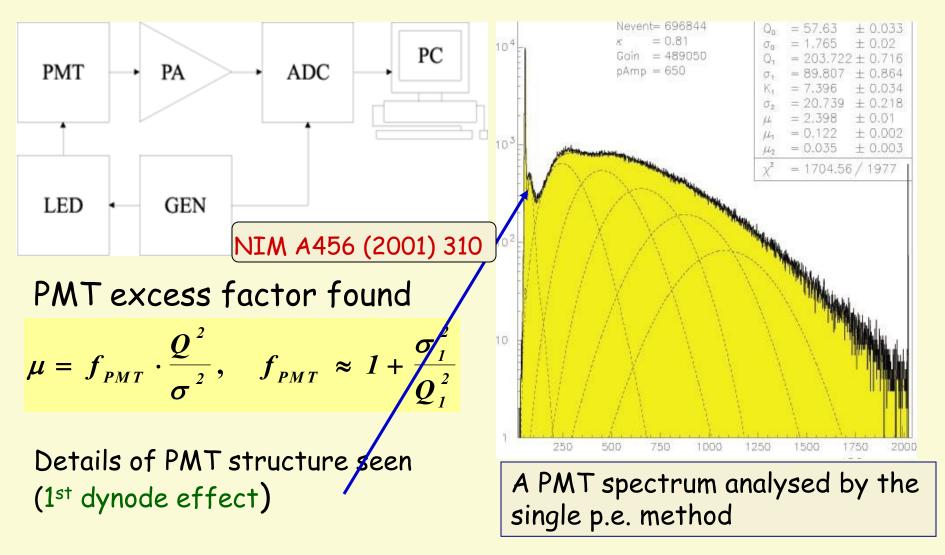
ATLAS team in Bratislava

Team: 4 physicists, 3 PhD students, 2 und. students, 1 technician

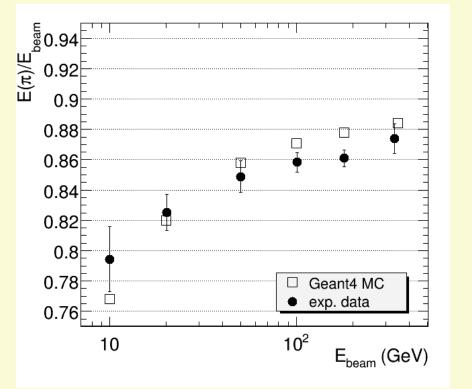
Past activities:

✓ Tests of photomultipliers using single photoelectron approach

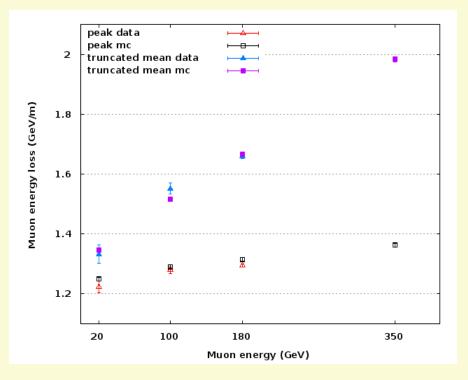
✓ Reconstruction of calorimeter response to pions (linearity, homogenita, energy resolution)


Method of energy reconstruction using topology of hadronic shower
 Method of fast simulation of hadronic calorimeter

Present activities:


DQ coordinator for TileCal, development of software for TileCal DQ Physics:

✓ Top quark properties: top quark charge studies via top decay products
 ✓ Soft QCD: Bose-Einstein correlation studies


BA team: PMT tests using single p.e. analysis

BA-team: Some test beam results

Linearity of TileCal response to pions ✓ data compared with MC ✓ Non-compensation effect seen

TileCal response to muons as a function of muon energy data compared to MC:

- ✓ most probable response value
- ✓ truncated mean values

BA-team: Top Quark charge

SM (Q_{top} = 2/3):
 exotics (Q = -4/3):

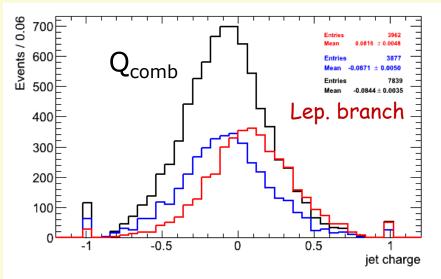
$$t^{2/3} \rightarrow b^{-1/3} + W^{+1} \qquad l^{+1} + v_e$$
$$\hat{t}^{-4/3} \rightarrow b^{-1/3} + W^{-1} \qquad l^{-1} + v_e$$

for top quark determination
 -Charge of W via its lept-decay
 -Determination of b-jet charge
 -Correct lepton - b-jet pairing

$$Q_{b-jet} = \frac{\sum_{i}^{N} q_{i}}{\sum_{i}^{N} |\vec{j} \cdot \vec{p}_{i}|}$$

$$q_i \equiv i^{\text{th}}$$
 particle charge
 $\vec{p}_i \equiv i^{\text{th}}$ particle momentum
 $j \equiv b$ -jet direction
 $\kappa \equiv an exponent (=0.5)$

lepton+jets case (1 hi- p_T lep.) $m(l, b_{jet}^{(1,2)}) < m_{cr} \& m(l, b_{jet}^{(2,1)}) > m_{cr}$ alternative: KLFitter tested


Needed:
$$\langle \boldsymbol{\varrho}_{l} \times \boldsymbol{\varrho}_{bjet} \rangle + \langle 0: SM \rangle$$
 SM $\rightarrow 0: E \times 0$

Top quark Charge (2)

MC used: MC@NLO

 $Q(I+) \equiv$ mean b-jet charge assoc. with I+ $Q(I-) \equiv$ mean b-jet charge assoc. with I- $Q_{comb} \equiv$ mean $Q_{bjet} \times Q(I)$ charge

Invariant mass pairing criterion tested

We analyze MC samples and real data To have an interesting result 150 pb⁻¹ is needed Hopefully our results will be blessed during June 2011!

BA-team: BEC- theoretical background

BEC effect correspond to an enhancement in two identical boson correlation function when the two particles are near in momentum space

$$\boldsymbol{C}_{2}(\boldsymbol{q}) = \frac{\boldsymbol{P}(\boldsymbol{p}_{1}, \boldsymbol{p}_{2})}{\boldsymbol{P}(\boldsymbol{p}_{1})\boldsymbol{P}(\boldsymbol{p}_{2})}$$

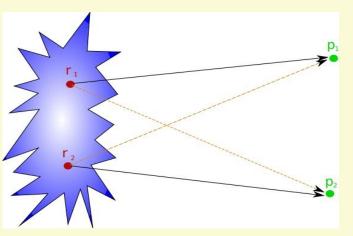
Plane wave approach (incoherent sum):

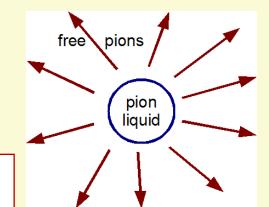
for Gaussian source emission probability

 $\boldsymbol{C}_{2}(\boldsymbol{Q}) = 1 + \lambda \, \boldsymbol{e}^{-\boldsymbol{Q}^{2}\boldsymbol{R}^{2}}$

R is the source radius

 \checkmark leads


 λ is the *incoherence factor* (0,1) introduced empirically $Q^2 = -q^2 = (p_1 - p_2)^2 \equiv$ the four momentum difference


Quantum optical approach (taken from optics):

 \checkmark based on squeezed coherent states

to:
$$C_2(Q) = 1 + 2p(1-p)e^{-R^2Q^2} + p^2e^{-2R^2Q^2}$$

BEC: experimental approach

 \Box For each track pair we reconstruct Q ($Q^2 = -q^2 = -(E_1 - E_2)^2 + (\vec{p}_1 - \vec{p}_2)$)

 \Box We reconstruct N(Q) for

✓ signal sample (contains BEC)

✓ reference sample (without BEC)

In experiment: we construct the C_2 correlation function as a ratio of the signal Q distribution (N(Q)) and reference Q distribution (N^{ref}(Q)) which is free of BEC, but should contain all other correlations.

_It is a problem!!!

 $\boldsymbol{C}_{2}(\boldsymbol{Q}) = \frac{N(\boldsymbol{Q})}{N^{ref}(\boldsymbol{Q})}$

N(Q) = two particles Q distribution - identical particles used

Fitting functions used in the analysis $C_{2}(Q) = C_{0}\left(1 + \lambda e^{-R^{2}Q^{2}}\right) = C_{0}\left(1 + 2p(1-p)e^{-R^{2}Q^{2}} + p^{2}e^{-2R^{2}Q^{2}}\right) = C_{0}\left(1 + 2p(1-p)e^{-R^{2}Q^{2}} + p^{2}e^{-2R^{2}Q^{2}}\right)$

In real fit: 27/05/2011

S. Tokár, RECFA meeting Košice

 $C_2(Q) \rightarrow C_2(Q) \times (1 + \varepsilon Q)$

Results blessing: June '11

Outreach activities

Exposition about CERN - project LHC /ATLAS and ALICE at 8 places during 2009-10, 167 days 30 popular presentations on high energy physics matter 86 student -lectors visited by 295 groups, 15,000 visitors

Popular presentations for high schools and general public
 ✓ day of CERN was organized in Bratislava and Košice when first collisions occurred
 ✓ Special presentations devoted to LHC experiments
 ✓ created a CD with popular presentation on the present elementary particles physics for high schools in Slovakia

Performances in Slovak TV and Radio, newspapers and journals

Conclusions

- Experiment ATLAS it is an outstanding opportunity for scientists of Slovakia, especially young people, to be in contact with frontier high energy physics.
- □ Our teams contributed quite a lot to the ATLAS calorimetric system in each step of its construction, testing, commissioning...
- □ We actively participate in physics studies (top physics, QCD) and we are ready to do our best for a success of ATLAS.
- □ We are optimistic and believe that ATLAS (along with other LHC experiments) will provide us with exciting discoveries that will promote particle physics to deeper understanding of Nature.
- □ In CERN experiments we have reached a global unification of people of different nations hopefully this example will have a positive impact on all other mankind activities.

