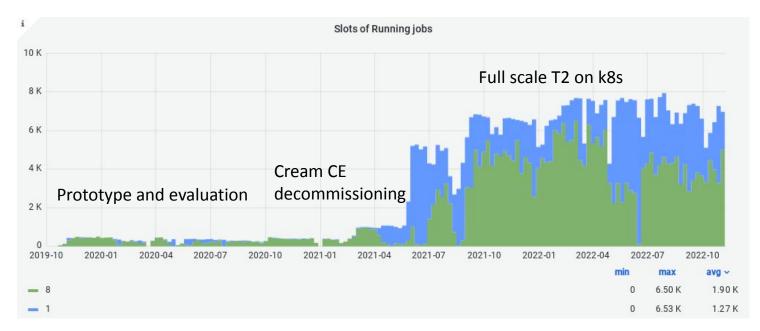
Towards a Kubernetes-native T2 at UVic

Ryan Taylor



Background

CA-VICTORIA-WESTGRID-T2 uses k8s for container-native batch computing. Harvester submits ATLAS grid jobs to k8s API, which runs them as pods. No traditional batch system or CE.

Prior talks on UVic k8s T2


- 2019 Nov <u>CHEP</u>
- 2019 Dec <u>pre-GDB</u>
- 2020 Dec <u>k8s HEP meetup</u>
- 2020 Dec <u>WFM SW TIM</u>
- 2021 May <u>ADC TCB</u>
- 2022 June pre-GDB
- 2022 Nov <u>WLCG workshop</u>

Arbutus Cloud

- General-purpose science cloud
- ~3K users, 1K projects
- 44,000 vCPUs
- 416 vGPUs
- 17 PB (usable) Ceph
 - RBD, object, CephFS

Why cloud and why Kubernetes?

UVic site background

	Physical			Virtual
•	Bare metal batch cluster and	2010	•	cloud technology experimentation
batch	WLCG ATLAS T2 commissioned	2011		 Nimbus, OpenNebula, Oracle cloud
	 Serial & parallel partitions, GbE & IB networks 			Synnefo: Nimbus cloud
•	Serial cluster expansion	2012		
•	Cloud funding, dedicated hardwar	e		virtualized batch cluster in cloud
cloud	first national cloud service offeringmajor national cloud site	20142016	•	Nephos/West: OpenStack cloud
			•	Arbutus: OpenStack cloud site
•	Cloud hardware expansion	2018 2019	•	Kubernetes experimentation
				CA-VICTORIA-K8S-T2 in production
	Cloud hardware expansion	2020		 gaining k8s experience for ATLAS
		2021	•	T2 compute entirely k8s-native
	University			 CREAM CE decommissioning

Why cloud and why Kubernetes?

- Running compute jobs is "easy"
- Harder: statefulness (storage), long-running services
 - Ongoing management, updates, configuration changes
- Doing it robustly is even harder
- Cloud + k8s provides:
 - Flexible & dynamic infrastructure
 - Resilience and automated remediation
 - Rapid application deployment
 - Application lifecycle management
 - Horizontal scalability

VMs as pets

Openstack

VMs as cattle

Openstack + ???

containers as cattle

Openstack + k8s

The eventual goal: a fully k8s-native T2 Installable with Helm

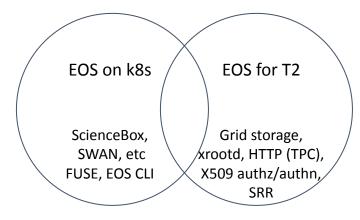
- Helm: package application manager for Kubernetes
 - One command to install/upgrade everything
 - Comprehensive configuration via one YAML file
- helm install T2Site
 - (K)APEL accounting done
 - frontier-squid done Sep 2022
 - EOS SE further work needed
 - compute (security rules, Harvester setup) done (but not via Helm yet)
 - CVMFS-CSI optional
 - Compute Element built-in
 - Batch system built-in

2021

Considerations for EOS SE on k8s with CephFS

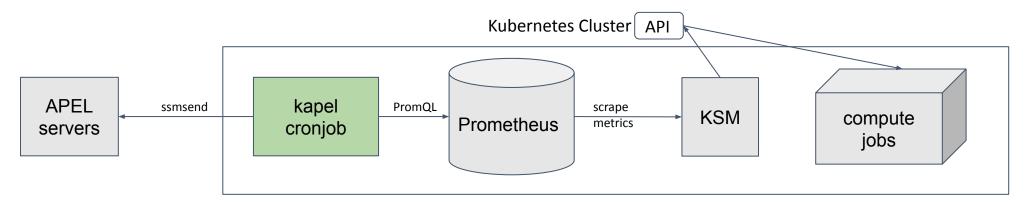
Currently: dCache (2.7 PiB) bare metal storage servers. Why change?

- Physical consolidation: all storage on Ceph
- Logical consolidation: services on k8s
- EOS can be installed on k8s via Helm chart
 - reproducible, single step deployment
 - easier to manage and maintain
 - easy to set up another instance, e.g. for dev
- EOS + CephFS is an established solution
- Opportunity: <u>direct data access for jobs</u> on CephFS



Challenges deploying EOS SE on k8s with CephFS

- Expansion/development of Helm chart needed
 - e.g. for X509 authz/authn #74 #75
- CephFS bug encountered: <u>55090</u>
 - Ceph fixes: #46902 #46905
- Need to scale cluster ingress bandwidth > 1 NIC
 - integrate PureLB with Calico BGP instead of ARP mode
- Benchmarking and performance tuning



https://github.com/rptaylor/kapel available via Helm chart

KAPEL

Container-native APEL accounting for Kubernetes

- Standard k8s add-ons do most of the work
 - kube-state-metrics (KSM) instead of batch log parser
 - Prometheus instead of MySQL DB for data collection and storage
 - PromQL for data querying, analytics
 - k8s cron job instead of APEL node
 - Only needed to write ~200 lines of python (and some YAML)

Frontier-squid

Deployed on Kubernetes

- Chose ScienceBox frontier-squid <u>Helm chart</u>
 - Simple, lightweight, container-native approach
 - Trivial to scale to N instances with automatic load-balancing and failover
- UVic contributed enhancements
 - Run as unprivileged squid user #61
 - Allow configuration of service details #63
 - Support for priorityClass and pod resource requests/limits #64
 - Send access logs to stdout #69
 - Configurable ACL activation #72
 - Harmonize configuration with upstream package #73
 - Add backup readiness probe URL for redundancy #74
 - Update ACLs for Frontier servers #78
 - Expand list of safe ports #81
- But difficult/impossible to use WLCG SNMP monitoring
 - Hardcoded to use only port 3401
 - Multiple load-balanced squids behind one IP need different ports

CVMFS proxy sharding with k8s Squids

- New feature in CVMFS v2.10 to improve cache hit rates
- CVMFS understands round-robin DNS
 - dereferences multiple A records
- Solution using k8s Services: <u>headless ClusterIP</u>

```
service:
clusterIP: None
```

- Should decrease CVMFS_DNS_MIN_TTL to a small value
 - CVMFS default is 1 min
 - K8s deployment upgrade could be < 1 min (and DNS TTL is 5 s)
 - Details: #97

Questions/discussion

Ingress and LBaaS

- Initial basic approach used keepalived and nginx-ingress to receive traffic from outside world into clusters
- Migrated to PureLB and Traefik
 - More maintainable/manageable, via Helm charts
 - Cohesive access to dashboards etc across all clusters
- PureLB: like MetalLB but simpler, lightweight
 - relies on Linux network stack of host
 - Programmable (LB -> LBaaS)
- Traefik Ingress controller
 - Widely used, full featured, nice web UI, CRDs
 - Better TCP and UDP support

PureLB

Misc. improvements

- Switch from CentOS8 to Almalinux 8 (needed GPT partition table)
- Switch from Docker to containerd
- Install metrics-server for node/pod resource monitoring (kubectl top)
- Using full-node VMs (80 cores, 360 GB RAM)
 - fewer VMs, better disk IO
- Define priorityClass for everything to avoid resource contention
 - also resource requests/limits as much as possible
- Calico scalability/efficiency
 - use Typha to reduce load on API servers for large clusters
 - disable IPIP encapsulation within cluster to reduce network overhead

