

Considerations on storage in the HL-LHC area

Eric Lancon, Doug Benjamin, Vincent Garonne, Chris Hollowell, Qiulan Huang, Tejas Rao, Ofer Rind, Alex Zaytsev

US ATLAS Facilities workshop, SLAC, Nov. 2022

https://indico.cern.ch/event/1201515/

@BrookhavenLab

Challenges for Efficient Facility Operation into HL-LHC Era

- Managing anticipated hardware volume for HL-LHC is going to be challenging for facilities, in particular (disk) storage
- Additionally:
 - HEP solutions fall behind current trends and may come with additional costs in a multi-program environment
 - Requirements for Federated Identity and compliance with cyber regulations may be challenging

Hardware volume and budget

- Budget exercise for US ATLAS Tier-1 into the HL-LHC era
 - Internal BNL costing model applied to ATLAS hardware forecast (inflation not taken into account)
 - Costing model provides qualitative budgetary assessments into Run4 (2029-2032), derived from hardware requirements
 - Not-surprisingly, costs at Tier-1 facility driven by storage

ATLAS Software and Computing HL-LHC Roadmap

Reference

Created: 1 October 2021 Last Modified: 22 February 2022 Prepared by: The ATLAS Collaboration

© 2022 CERN for the benefit of the ATLAS Collaboration.

Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 licenses

LHC Run 4: 2029 - 2032

Hardware volume profile into HL-LHC era

Storage is the most costly resource

FY29-32: Equipment - Agressive scenario

Relative equipment yearly budget Run4 / Run3

Storage is the most costly resource

How to reduce budget requirement for (disk) storage?

- Store less (requirement is 3x RAW data volume)Address event size (content and improved compression)

 - Versioning,
 - Replication policies.
- 2. Store differently

 - Use of different storage technologies tailored for each usage,
 Currently one class of storage for all types of data and usages

Storage is the most costly resource

How to reduce budget requirement for (disk) storage?

- Store less (requirement is 3x RAW data volume)
 - Address évent size (content and improved compression)

 - Versioning, Replication policies.

Implementation: ATLAS

Store differently

- Use of different storage technologies tailored for each usage, Currently one class of storage for all types of data and usages

Implementation: Facilities

Store differently

- Issues with current disk storage:
 - Filled with warm/cold data
 - All data types are treated the same, even if they have very different values (DAOD have much higher value than logs, Experimental Data has more value than Simulation, ...)
 - All data types are expected to be available immediately everywhere
 - Designed for IO while most applications are not IO limited or critical
 - Not even optimized for IO intensive applications like interactive analysis
- More optimal foundation for supporting HL-LHC activities would be:
 - Bulk storage : Object store (better scaling, operational benefits, globally accessible, ...)
 - IO intensive: dedicated POSIX storage high IOPS design
 - Archive/Cold storage: backup/frozen data
 - And a tiered storage solution to effectively leverage storage "classes"

Storage matching workflows

- Different workflows have different storage requirements
 - Production workflows typically spend more time on processing than IO operations
 - Capacity is a more important criteria than IOPS
 - Entire events are read into memory and processed. The IO access pattern is different from user analysis workflows
 - User analysis workflows tend to require more IOPS
 - The IO access pattern is different from reconstruction or simulation. Users use only part of the event record and more random access pattern.
 - IOPS instead of Bulk capacity is the most important optimization criteria.
- Columnar Analysis workflows should benefit from High IOPS flash storage (SSD/nvme)
- New storage architectures <-> new access methods

DATADISK today at BNL: Total size vs number files per data type

DATADISK today at BNL

Today:

- Millions of files mostly small files
- Do not require high storage availability

DATADISK polluted by small and low IO requirement files

~50% of namespace for 3% of volume

Let's move small files and low access frequency to a different class of storage

A new class of storage for the tens of millions small files

Let's start with small file case by using Object Store type technology

Advantages

Object Store scale well for 100s million of files
Can be deployed on dedicated low capability hardware
First stage of a multi-tiered storage, next stage would be for high frequency access files on IO performant storage

Implementation

Needs to be transparent to ATLAS Special dCache pools is one possibility Storage can possibly be used by all of US ATLAS facilities

Takeaway

 One type of storage for all is not optimal and likely will not scale into the HL-LHC era (3 x today's disk space)

- Need to implement different disk storage solutions for different use cases (workflows)
- Start an R&D implementing differentiation of disk storage with small and unused files

