

LHCb: Tetraquarks

Zehua Xu On behalf of the LHCb collaboration

LPC-Clermont, IN2P3/CNRS

2022.10.18 @ CERN

Outline

- Recap of tetraquark history at LHCb
- > Observation of a resonant structure near the $D_s^+ D_s^-$ threshold

New [LHCb-PAPER-2022-018,LHCb-PAPER-2022-019 in preparation]

Recap of history

T_{cc}^+ observation in $D^0 D^0 \pi^+$

- > First observation of same-sign doubly charmed tetraquark T_{cc}^+
- > Very narrow state in $D^0D^0\pi^+$ mass spectrum
- > Manifestly exotic with quark content $cc\overline{u}\overline{d}$
- > Mass ~ 3875 MeV, very close to the $D^{*+}D^{0}$ threshold

 $\delta m_{\rm BW} = -273 \pm 61(\text{stat}) \pm 5(\text{syst})^{+11}_{-14}(\text{model}) \text{ keV}$ $\Gamma = 410 \pm 65(\text{stat}) \pm 43(\text{syst})^{+18}_{-38}(\text{model}) \text{ keV}$

➤ Consistent with isoscalar J^P = 1⁺
➤ No hint of possible T⁰, T⁺⁺ isospin partners

Model 1, no-interference fit:

 $M[T_{\psi\psi}(6900)] = 6905 \pm 11(\text{stat}) \pm 7(\text{syst}) \text{ MeV}/c^{2}$ $\Gamma[T_{\psi\psi}(6900)] = 80 \pm 19(\text{stat}) \pm 33(\text{syst}) \text{ MeV}/c^{2}$

Model 2, simple model with interference:

 $M[T_{\psi\psi}(6900)] = 6886 \pm 11(\text{stat}) \pm 11(\text{syst}) \text{ MeV}/c^{2}$ $\Gamma[T_{\psi\psi}(6900)] = 168 \pm 33(\text{stat}) \pm 69(\text{syst}) \text{ MeV}/c^{2}$

▶ The significance in two model both > 5σ , $T_{\psi\psi}$ (6900) is observed.

$T_{\psi\psi}(6900)$ confirmed by CMS and ATLAS

[CMS PAS BPH-21-003]

 \succ $T_{\psi\psi}$ (6900) is confirmed by CMS and ATLAS \succ $T_{\psi\psi}(6600)$ and $T_{\psi\psi}(7300)$ reported by CMS investigated by LHCb in future

$T_{cs0(1)}(2900)^0$ observation[PRL 125 (2020) 242001, PRD 102 (2020) 112003]

16

14

6

8

10

 D^*K^*

 D_1K

3

 $m(D^{-}K^{+})$ [GeV/ c^{2}]

 $m^2(D^-K^+)$ [GeV²/c⁴]

> B^+ → $D^+D^-K^+$, an ideal channel to search for open-charm tetraquark

Amplitude analysis performed:

First open charmed tetraquark observed

LHCb

(b)

12

LHCb

(b)

3.5

$T^{\phi}_{\psi s1}(4000)^+$ and $T_{\psi s1}(4220)^+$

 $\succ T^{\phi}_{\psi s1}(4000)^+ \text{ and } T_{\psi s1}(4220)^+ \text{ observed in } B^+ \rightarrow J/\psi \phi K^+$

► $T^{\phi}_{\psi s1}(4000)^+$ isospin partner searched in $B^0 \to J/\psi \phi K^0_s$; expect some results at LHCb implication workshop tomorrow

10/18/22

Doubly charged tetraquark and its neutral partner

Motivation of searching for $T^{a}_{c\bar{s}0}$ (2900)^{0/++}

- > $T_{cs0}(2900)^0$ and $T_{cs1}(2900)^0$ observed, are there their isospin partners?
- > Possible to search for isospin partner in $D_s^+\pi^+$ or $D_s^+\pi^-$ final states in $B^+ \to D^- D_s^+\pi^+$ and $B^0 \to \overline{D}^0 D_s^+\pi^-$
- $\begin{array}{ll} \succ & \mbox{Help to determine whether or not } D_{sJ} \left(D_s^+ \pi^0 \right) \mbox{states have some} \\ & \mbox{tetraquark states theorized} & \mbox{[PRL 90 (2003) 242001]} \end{array}$

Dataset

- Full LHCb Run 1+2 dataset;
- ► After loose PID cuts and multivariate analysis, $B^+ \rightarrow D^- D_s^+ \pi^+$ yields ~3940 and $B^0 \rightarrow \overline{D}{}^0 D_s^+ \pi^-$ yields ~4420, purity > 90%

There are hints of $T^a_{c\bar{s}0}(2900)^0$ and $T_{c\bar{s}0}(2900)^{++}$ from Dalitz plots
Joint Dalitz plot fit performed

Dalitz fit with only D^*

> Fit poorly describes data around 2.9 GeV in $D_s^+\pi^-(\pi^+)$

Dalitz fit with $T^a_{c\bar{s}0}$ (2900)^{0/++}

[LHCb-PAPER-2022-026]

- > The fit greatly improved;
- > Significance of $T^a_{c\bar{s}0}$ (2900)^{0/++} >9 σ
- > Strong preference for J^P as 0^+ (>7 σ)
- Mass and width are measured

$$\begin{split} M &= 2.908 \pm 0.011 \pm 0.020 \, \text{GeV} \text{ and} \\ \Gamma &= 0.136 \pm 0.023 \pm 0.011 \, \text{GeV}, \end{split}$$

Argand diagram of $T^a_{c\bar{s}0}$ (2900)^{0/++}

> The fit using seven spline points to describe $T^a_{c\bar{s}0}$ (2900)^{0/++} lineshape;

Consistent with Breit-Wigner lineshape, further supports the resonance character

[LHCb-PAPER-2022-026]

Observation of $D_s^+ D_s^-$ **Threshold Resonances** in $B^+ \rightarrow D_s^+ D_s^- K^+$

$B^+ \rightarrow D_s^+ D_s^- K^+$ at LHCb

> Motivation:

- $B^+ \rightarrow D_s^+ D_s^- K^+$ has not been observed previously
- $\mathcal{B}(B^+ \to D_s^+ D_s^- K^+)$ allows to estimate partial width of X near threshold [arXiv: 1602.08421]
- Also search for other exotics
- Signal reconstruction using LHCb Run 1+2 dataset;
 - B^+ yield ~360 candidates with 84.4% purity

Dalitz plot analysis to understand the resonance structure

10/18/22

Zehua XU

Dalitz analysis

Baseline model well describes data

• 0^{++} : *X*(3960), *X*(4140) and NR; 1^{--} : ψ (4260) and ψ (4660)

- ➤ X(3960):
 - Significance > 12σ
 - $J^{PC} = 0^{++}$ preferred over 1^{--} and $2^{++} (> 9\sigma)$
- ➤ X(4140):
 - $J^{PC} = 0^{++}$ preferred over 1^{--} and $2^{++} (> 3\sigma)$
 - The dip can also described by $J/\psi \rightarrow D_s^+ D_s^-$ scattering

	<i>M</i> [MeV]	Γ [MeV]	J ^{PC}	
X(3960)	3955 <u>±</u> 6 <u>+</u> 12	$48\pm17\pm10$	0++	
$\chi_{c0}(3930)$	3924 <u>+</u> 2	17 <u>+</u> 5		

Same particles?

• Latest Lattice QCD shows the enhancement near the threshold of $D_s^+ D_s^-$ due to the presence of $\chi_{c0}(3930)$ [arXiv: 2207.08490]

$$\frac{\Gamma(X \to D^+ D^-)}{\Gamma(X \to D_s^+ D_s^-)} = \frac{\mathcal{B}(B^+ \to D^+ D^- K^+) \times \mathcal{FF}_{B^+ \to D^+ D^- K^+}^X}{\mathcal{B}(B^+ \to D_s^+ D_s^- K^+) \times \mathcal{FF}_{B^+ \to D_s^+ D_s^- K^+}^X} = 0.29 \pm 0.09 \pm 0.10 \pm 0.08$$

- X has an exotic nature: creation of $s\bar{s}$ from vacuum is suppressed wrt. $u\bar{u}$ and $d\bar{d}; X \rightarrow D_s^+ D_s^-$ has smaller phase-space than $X \rightarrow D^+ D^-$
- Different particles?
 - No obvious candidate within conventional multiplets for them; likely to be exotic

Summary and Prospects

- Very fruitful tetraquarks results at LHCb, e.g. charmonium-like, double charmed, fully charmed states and etc.; recent interesting results:
 - Two new tetraquark candidates $T^{a}_{c\bar{s}0}$ (2900)^{0/++} observed
 - X(3960) near $D_s^+ D_s^-$ threshold observed

Larger statistics in Run 3 boosts multiquark states searching:

- Search for more tetraquarks and their isospin partners
- Study J^P and other properties of tetraquark states
- Theoretical predictions very helpful

•

Backup

Thanks for your attention

Introduction

- First tetraquark candidate observed at BELLE in 2003 [PRL 91 (2003) 262001]
- ➢ 59 new hadrons observed at LHCb, 10+ are tetraquark states
- Following "Exotic hadron naming convention" proposed by LHCb

[<u>arXiv: 2206.15233]</u>

The LHCb detector

- > LHCb is a dedicated heavy flavor physics experiment at LHC
 - ~20,000/s bb generated at LHCb point in Run2
 - A single-arm forward region spectrometer covering $2 < \eta < 5$

Exotic Hadron Naming Convention

- Many new exotic hadrons do not fit into the current PDG naming convention;
- Rule of new naming convention:
 - Any states with less than 4 quarks will remain unchanged
 - Use T for tetraquarks and P for pentaquarks
 - Superscripts will indicate isospin, parity and G-parity
 - Subscripts Υ, ψ and ϕ indicate hidden beauty, charm and strangeness

Minimal quark content	Current name	ן(G) _, J ^P (C)	Proposed name
οō	χ_{c1} (3872)	$I^G = 0^+, J^{PC} = 1^{++}$	$\chi_{c1}(3872)$
ccus	$Z_{cs}(4000)^+$	$I = \frac{1}{2}, \ J^P = 1^+$	$T^ heta_{\psi s1}(4000)^+$
ccus	$Z_{cs}(4220)^+$	$I = \frac{1}{2}, J^P = 1^?$	$T_{\psi s1}(4220)^+$
5 5 5 5	X(6900)	$I^{G} = 0^{+}, J^{PC} = ?^{?+}$	$T_{\psi\psi}(6900)$
csūd	<i>X</i> ₀ (2900)	$J^{P}=0^{+}$	$T_{cs0}(2900)^0$
csūd	<i>X</i> ₁ (2900)	$J^P = 1^-$	$T_{cs1}(2900)^0$
ccūđ	$T_{cc}(3875)^+$		$T_{cc}(3875)^+$
bbud	$Z_b(10610)^+$	$I^G = 1^+, J^P = 1^+$	$T^{b}_{\Upsilon 1}(10610)^+$
ccuud	$P_{c}(4312)^{+}$	$I=\frac{1}{2}$	$m{P}_\psi^{N}(4312)^+$
ccuds	$P_{cs}(4459)^0$	<i>l</i> = 0	$P^{\Lambda}_{\psi s}(4459)^0$

Search for full charmed ccccc tetraquark

- Motivation:
 - $T_{QQ\bar{Q}\bar{Q}\bar{Q}}$ (Q = c or b) states is isolated from both quarkonia and quarkoniumlike exotic states
 - A $T_{cc\bar{c}\bar{c}}$ can decay into a pair of charmonia

> Prompt J/ψ pair production:

Single parton scattering (SPS)

[arXiv: 1803.02522]

J^{PC}	S-wave	P-wave
0++	$\eta_c(1S)\eta_c(1S), J/\psi J/\psi$	$\eta_c(1S)\chi_{c1}(1P), J/\psi h_c(1P)$
0-+	$\eta_c(1S)\chi_{c0}(1P),J/\psi h_c(1P)$	$J/\psi J/\psi$
0	$J/\psi\chi_{c1}(1P)$	$J/\psi\eta_c(1S)$
1++	-	$J/\psi h_c(1P), \eta_c(1S)\chi_{c1}(1P), \\ \eta_c(1S)\chi_{c0}(1P)$
1+-	$J/\psi\eta_c(1S)$	$\frac{J/\psi\chi_{c0}(1P), J/\psi\chi_{c1}(1P)}{\eta_c(1S)h_c(1P)}$
1-+	$J/\psi h_c(1P), \eta_c(1S)\chi_{c1}(1P)$	-
1	$J/\psi\chi_{c0}(1P), J/\psi\chi_{c1}(1P), \eta_c(1S)h_c(1P)$	$J/\psi\eta_c(1S)$

Decays in $2J/\psi$ directly or with feed-down

Double parton scatterings (DPS)

>Dominates high J/ψ pair mass region

Zehua.XU

Outline

•

- Open charmed tetraquarks:
 - Observation of D^-K^+ structure in $B^+ \rightarrow D^+D^-K^+$ $(T_{cs0(1)}(2900)^0)$
 - Doubly charged tetraquark and its neutral partner $(T^{a}_{c\bar{s}0} (2900)^{0/++})$
 - **New** [LHCb-PAPER-2022-026 in preparation]

[PRL 125 (2020) 242001, PRD 102 (2020) 112003]

- > Doubly charmed tetraquark $T_{cc}(3875)^+$
- > Open charmed tetraquark $T_{\psi\psi}$ (6900)
- Charmonium-like tetraquark
 - Observation of a resonant structure near the $D_s^+ D_s^-$ threshold New [LHCb-PAPER-2022-018,LHCb-PAPER-2022-019 in preparation]
 - Tetraquarks in in $B^+ \rightarrow J/\psi \phi K^+$
- → Sizeable ω contribution to $\chi_{c1}(3872) \rightarrow \pi^+\pi^- J/\psi$

[LHCb-PAPER-2021-045]

[Nature Physics 18, 751–754 (2022)]

[Science Bulletin 65 (2020) 032]