Back on the iron throne: New measurements of the ⁵⁶Fe(n,inl) and ⁵⁶Fe(p,inl) cross sections A. Negret¹, C. Borcea¹, M. Boromiza¹, D. Chiriac¹, F. Claeys², Ph. Dessagne², M. Diakaki³, A. Gandhi¹, G. Gkatis^{3,4}, G. Henning², N. Kalantar-Nayestanaki⁵, M. Kavatsyuk⁵, M. Kerveno², G. Noguere⁴, M. Nyman⁵, A. Olacel¹, A. Oprea⁷, C. Paradela⁷, E. Pirovano⁸, A. Plompen⁷ ¹ IFIN-HH, Romania ² IPHC, France ³ NTUA, Greece ⁴ CEA Cadarache, France ⁵ RUG, The Netherlands ⁶ Univ. of Helsinki, Finland ⁷ EC-JRC-Geel, Belgium ⁸ PTB, Germany ### **Table of contents** ### Introduction The existing data and evaluations on ⁵⁶Fe(n,inl) # The ⁵⁶Fe(n,n'γ) measurement performed at GELINA, published in 2014 PHYSICAL REVIEW C 90, 034602 (2014) #### Cross-section measurements for the 56 Fe $(n, xn\gamma)$ reactions A. Negret, 1,* C. Borcea, 1 Ph. Dessagne, 2 M. Kerveno, 2 A. Olacel, 1,3 A. J. M. Plompen, 4 and M. Stanoiu 1 FIG. 6. (Color online) Integral production cross section for the $846.8 \text{ keV} \gamma$ ray compared to several previous measurements. ORNL-1971, ANL-1976, ORNL-1990, LANL-2004, and HZDR-2014 label the results presented in Refs. [8–12], respectively. The gray band from panel (b) represents the uncertainties of our measurement. ### The CIELO evaluation of ⁵⁶Fe(n,n'γ), published in 2018 FIG. 9. (Color online) Evaluated 56 Fe(n,n') neutron inelastic cross section compared with data retrieved from EXFOR and with previous evaluation. The asterisk on the Nelson data indicates renormalization described in the text. ### The INDEN evaluation of ⁵⁶Fe(n,n'γ), 2019 Presentation for INDEN2019 2 -5 Dec, Vienna, Austra ### Re-evaluation of Fe-56 data based on CENDL-3.2b1 **Haicheng WU** China Nuclear Data Center(CNDC) China Institute of Atomic Energy(CIAE) P.O.Box 275-41, Beijing 102413, P.R. China E-Mail: haicheng@ciae.ac.cn - However, the performance of these two libraries shown in iron shielding benchmarks were very poor. - Serious under predictions of the neutron leakage spectra are observed in the shielding benchmark testing with the IPPE iron sphere. - For 70cm-dia. sphere, the underestimation goes up to 50%; - □ The bias is too large to be acceptable by shielding design. ### The INDEN evaluation of 56 Fe(n,n' γ), 2019 #### Recommended data and C32b5 evaluation - 4-20MeV, Nelson(2004)c; Below 4MeV, Voss(1971)c. - C32b5 were evaluated based on recommended data by editing (n,inl) and (n,el) cross sections of C32b1. - <4MeV, C32b5 was tuned to give better shielding benchmark results. ## GAINS @ GELINA - Experimental setup - Measurement technique ### **GELINA – Geel Linear Accelerator** #### **GELINA** - 130-MeV electrons + ²³⁸U target - Repetition rate: 400 Hz - Time resolution: ~2 ns - Flight paths available: 10-400 m #### ²³⁵U Fission Chambers to monitor the beam all absolute cross section values scaled to $^{235}U(n,f)$ ### **GAINS – Gamma Array for Inelastic Neutron Scattering** GAINS - Mostly for structural materials (light + medium elements) - 12 HPGe detectors: - 4 @ 110° - 4 @ 150° - 4 @ 125° - 235U Fission chamber for beam monitoring - Flight Path: 100 m - Repetition rate: 400 Hz - Neutron energy range: 0.07 18 MeV - Gamma flash from bremsstrahlung - Neutron flux ~2000 neutrons/cm²s ## ⁵⁶Fe(n,n'γ) The old measurement • Published in Physical Review C90, 034602 (2014) ### ⁵⁶Fe(n,n'γ): measured in 2007, final publication in 2014 FIG. 6. (Color online) Integral production cross section for the 846.8 keV γ ray compared to several previous measurements. ORNL-1971, ANL-1976, ORNL-1990, LANL-2004, and HZDR-2014 label the results presented in Refs. [8–12], respectively. The gray band from panel (b) represents the uncertainties of our measurement. ### ⁵⁶Fe(n,n'γ), 2014 – consistency checks Background check 843.7 keV ²⁷Al (834.0+recoil) keV ⁷²Ge Sample thickness variation (multiple scattering, self-absorption) #### Other possible issues: - 56 Fe(n,p) 56 Mn (β -, $T_{1/2}$ =2.6 h) 56 Fe: continuous contribution, not significant within our effective measurement time (0.8% of the time), not observed - Absolute scaling to the Fission Chamber yield [235U(n,F) cross section]: thoroughly analyzed, see A. Plompen *et al.,* J. Korean Phys. Soc. 59, 1581 (2011) ### **Back on the Iron Throne:** New measurements of ⁵⁶Fe(n,n'γ) and ⁵⁶Fe(p,p'γ) A project supported by UEFISCDI through the PCE2021 program ### ⁵⁶Fe(n,n'γ) at GAINS, JRC-Geel, Belgium • Experiment scheduled for September 2023, postponed for the beginning of 2024 ### ⁵⁶Fe(p,p'γ) at the 9-MV Tandem of IFIN-HH, Romania Experiment performed in 2023, preliminary results available Accelerator and Research reactor Infrastructures for Education and Learning This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 847594 (ARIEL). # A new measurement proposed for ⁵⁶Fe(n,n'γ) at GAINS – main differences Different flight path (slightly different neutron flux) # A new measurement proposed for 56 Fe(n,n' γ) at GAINS – main differences Increased number of detectors (8ightarrow12), new detector holder # A new measurement proposed for ⁵⁶Fe(n,n'γ) at GAINS – main differences ### 2007-today #### Acqiris DC440: - 2 channels/card; 12 bit; 420 MHz sampling - 1 trigger per card ### Upgrade complete #### Struck SIS3316-250-14 SADC: - 16 channels; 14 bit; 250 MHz sampling - GbE readout - Internal triggering with external gate New DAQ System # A new measurement proposed for ⁵⁶Fe(n,n'γ) at GAINS – main differences - Enriched target (2024, a very expensive business!) vs. natural target (2007) - Possibly a double normalization: Fission Chamber [235U(n,F)] + inelastic standard (⁷Li) EXPERIMENT SCHEADULED FOR FEBRUARY-MARCH 2024 ### ⁵⁶Fe(p,p'γ) at the 9-MV Tandem Experiment performed in June 2023, analysis ongoing - Targets: ⁵⁶Fe (0.6 mg/cm²), ⁵⁶Fe (3.3 mg/cm²), ^{nat}Fe (3 mg/cm²), ⁵⁸Ni (1.57 mg/cm²), - Empty frame + decay measurements - $E_p = 4 17$ MeV in steps of 50 keV (thin ⁵⁶Fe target) and 300 keV (thick ⁵⁶Fe target) - 2 x HPGe detectors + Faraday Cup used to integrate the beam ### ⁵⁶Fe(p,p' γ) at the 9-MV Tandem – γ spectrum around 847 keV # ⁵⁶Fe(p,p' γ) at the 9-MV Tandem – very preliminary cross section for the 847-keV transition. ### **Bonus:** New measurement of ⁵⁶Fe(n,elastic) and ⁵⁶Fe(n,inl) with ELISA at GELINA • Slides provided by Georgios Gkatis ### The ELISA setup - ELISA (ELastic and Inelastic Scattering Array) - 235U fission chamber (neutron flux) - 32 liquid organic scintillators (scattered neutrons) - 30 m distance from the GELINA neutron source (FP1_30m) - Fission chamber placed 1.37 m from the sample - Four sets of 8 detectors each mounted at specific angles - The goal is to produce **high-resolution cross section data** of neutron scattering in the fast neutron energy range ### **Neutron detectors** 25 - 32 liquid organic scintillators: - 16 **EJ301** xylene (C₈H₁₀) (**n-p**) - 16 EJ315 deuterated benzene (C₆D₆) (n-d) - Scintillation fluorescent light when ionizing radiation interacts with the liquid - Two types of detection: - Photons: via Compton scattering - Neutrons: via elastic scattering on the hydrogen nuclei ## Experimental details - ⁵⁶Fe sample Date: Spring/Summer 2023 Duration: 700 hours (Sample in + Sample out) Resolution: 10ns • Enriched ⁵⁶Fe sample Diameter: 70 mm Thickness: 1 mm Mass: 31.396 g | Isotope | Atomic
percent | | |------------------|-------------------|--| | ⁵⁴ Fe | 0.16 | | | ⁵⁶ Fe | 99.77 | | | ⁵⁷ Fe | 0.07 | | | ⁵⁸ Fe | <0.01 | | ## **Analysis** - <u>Step 1:</u> Characterization of the detectors (determination of the <u>resolution + response</u> functions) - <u>Step 2:</u> Separate photon from neutron induced events via pulse shape analysis (charge integration method) - Step 3: Background subtraction (sample-out measurement) - Step 4: Elastic Inelastic separation (kinematics calculations) - Step 5: Multiple scattering correction (Monte Carlo simulations) - Step 6: Calculation of the neutron fluence (fission chamber data analysis) - Step 7: Cross section calculation ### Step 3 + 4: Background subtraction/Elastic-Inelastic separation Background contribution from beam neutrons scattering on air or various materials around the setup once or twice before reaching the detectors. - Sample-out data (measurement with beam but without the sample) - Sample-in Sample-out normalization according to the fission counts recorded with the ²³⁵U chamber Split the neutron t.o.f. spectrum in small intervals of 5 ns each (time resolution of the measurement) - \triangleright Knowing the neutron incident energy and the detection angle via kinematics calculation determine the energy of the neutrons scattered elastically E'_{el} and inelastically E'_{inl} - Overlaps in the LO distribution of these 2 neutron energies proper threshold application ## Preliminary results of the ⁵⁶Fe(n,n) – (JEFF-3.3) WINS 2023 Sep-2023 29 - Inelastic scattering can be extracted using the ELISA setup via neutron spectrometry - 54 Fe(n,n₁') cross section was calculated from the first excited state of 54 Fe (E_x = 1.4082 MeV) in an old experiment - ⁵⁶Fe(n,n₁') cross section from the first excited state of ⁵⁶Fe (E_x = 0.8468 MeV) will be explored soon - Resolution of the detectors does not allow to distinguish between neutrons scattered from levels close to each other | 2.9590
2.9000
2.5613
2.5381 | 2.9600
2.9415
2.6576 | 2.9880 | 2.9700 | |--------------------------------------|----------------------------|------------------|------------------| | | | | 2.6004 | | | 2.0851 | | 2.2580 | | | | 1.9910 | 2.0765 | | | | 1.7254 | _1.6747_ | | 1.4082 | | 1.3568 | | | | 0.8468 | 1.0071 | | | | | 0.7064 | 0.8108 | | | | 0.3668 | | | | | 0.1365
0.0144 | | | ⁵⁴ Fe | ⁵⁶ Fe | ⁵⁷ Fe | ⁵⁸ Fe | ## Results of the 54 Fe(n,n₁') - (Angle-integrated) 32 ## **Conclusions** ### **Conclusions** - A new measurement of the ⁵⁶Fe(n,n'γ) cross sections is planned at GELINA using the GAINS spectrometer, numerous differences/upgrades compared to the previous measurement (2007) are foreseen, - A new measurement of the ⁵⁶Fe(p,p'γ) cross sections was performed at the 9-MV Tandem of IFIN-HH, preliminary results were shown, - A new measurement of the ⁵⁶Fe(n,elastic) cross section was performed using the ELISA setup at GELINA, data analysis is ongoing. # Thanks Do you have any questions? negret@nipne.ro https://www.nipne.ro/ #### Contact Us Address: Str. Reactorului no.30, P.O.BOX MG-6, Bucharest - Magurele, ROMANIA Phone: +(4021) 404.23.00 Fax: +(4021) 457.44.40