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Since WINS 2018 Predeal
finished 12C(n,n)
natLi(n,n)
new digital DAQ
13C(n,n)
54Fe(n,p)54Mn → 54Fe
24Mg(n,ng)

New Initiatives
19F(n,ng)
7Li(n,n) w dDAQ, ROOT

51V level scheme
restoring g-g coinc
dynamic biasing

Future
in the hopper
challenges at UKAL
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• Accelerator

– HVEC Model CN: 7 MV

– rf source

– p, d, 3He, a, … ions

– Authorized for 3H gas targets

– measure exit neutron energy

– 1 ns pulse widths every 533 ns

• Basic Nuclear Science 

– Nuclear Structure via (n,n'g)

• Level Schemes & Transitions

• Spectroscopic Information

• DSAM Lifetimes

– (3He,ng)

• Applied Nuclear Science

– Differential (n,n') Cross Sections

• 12,13C, 7Li, 19F , 54,56Fe , 23Na , 28Si

– Detector Development 
• Univ Guelph / TRIUMF 

– measurements for friends
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Quick reminders about the
University of Kentucky

Accelerator Lab
programs



MAIN
n detector

Neutron Time-of-Flight   

23Na(n,nk)
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Pulsed beam.  PSD.
Exit channel neutrons sort by flight time.



BGO

HPGe

g-Ray Detection

(singles setup)



Long
Counter

FM shelf (tof & psd)

FM track (tof & psd)

Mo

Monitoring Neutron Production 7



Measuring MAIN Detector Efficiency

Lo
n

g 
C

o
u

n
te

r

p

Tpn

n

d

d
FM

Yield
Eeff


•

=


)(

Measure 
angular / energy dependence of the

T(p,n)  or D(d,n) source reactions.

MAIN detector efficiencies must be 
measured because of

- descriminator threshold effects
- individ scintillator assembly behaviors
- sub-LLD pileup

example from former 12C
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The reaction channels
sample different parts of the 
efficiency curve at different 
energies.



depends on the level scheme of 
the target nucleus – overlapping peaks?

Back-burner project
to make this more definite

Overall during C runs:  elastics ~6%
inelastics ~10% 

Generic UKAL Uncertainties
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We cannot make sub% determinations of cross section values, however our 
angular distributions guide selections of model parameters.



Undergraduate students on the Carbon paper

from Sally Hicks

data taken 2011-2016 & 2016-2020

64 (n,n’) ang distrib at 45 incident energies btw 0.5 - 8 MeV
+ 12 (n,n’g) btw 5.6-7.8 MeV

Ramirez,  Phys Rev C 1023, 122446 (2022)
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a monster project

natC



19F

• Effectively no data since 1950s-1960s
• 19F is evil
• 90 ns isomer
• Hard to normalize xs at low energies.
• Had to develop new DAQ

https://depositphotos.com/13830278/stock-illustration-cartoon-red-devil.html



110 keV ½+
isotropic

197 keV 5/2+
a4 ≤ 0.1

→ ~4% problem

May 2018 Measurements at UKAL

Marcus Nyman had similar problems w 2018 data @ GELINA

WINS2018
19F



Yongchi Xiao

+ can record time-dependent g-ray spectra
+ observe time dependence of background
+ trapezoidal filter can be fine tuned for each detector, kinda
+ can replay data & change your mind about settings
+ n detector efficiencies less of a hassle
+ can actually digitize the 1.875 MHz beam pulse

- can’t do detailed live-monitoring of data coming in
- time consuming development, testing, refining
- modules may not perform as expected or play well together
- g peak shapes fill hard disks & buffers fast
- new ways to do things wrong
- team members not satisfied with g resolution

V1730   500 MS/s
scintillators nTOF

MAIN & FM
beam pulse

V1782  100 MS/s
HPGe

Long Counter
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New Data Acquisition System



Information about 197keV
transition using time recording 

features of
new dDAQ197 keV

Ge 140 keV

110 keV

clean

contaminated

TOF distrib of 197, contaminated by 70Ge(n,g)
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19F Practice Data

can remove time-dependent bckgnd effects



13C 3.1 moles

Thanks to OU & LANL
Originally the Lane 1981 samples

Allan Carlson
Thomas Massey

Matt Devlin 

https://www.nist.gov/people/allan-d-carlson

Motivations

Allan Carlson, NIST
National Institute of Standards & Technology
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~  “Since you did natC, perhaps you can do 13C…



ENDF 7.1    → ENDF 8.0    → ENDF 8.1Motivations

natC is a xs standard

btw 1 keV and 1.8 MeV

uncert 0.68 - 0.71%

Carlson NDS 110, 3215 (2009)
Carlson NDS 148,   143 (2018)

“Evaluation of Nuclear Data Stds”

0.9890

0.0110

±5

±5

2011 2018 soon

16

some were happy
some were surprised
some were upset
some were mad

very small
abundance fluctuations



Motivations

Worries
that the 2017 & 2006 values

differ by more than the uncertainty

Alan Carlson “Recent Standards Work”
CSEWG 2022 @ BNL Nov 2022

Differences are due to 
addition of 13C information

Carlson NDS 148,   143 (2018)    “Evaluation of Nuclear Data Stds”

Recent RPI data indicate 
less discrepancy in 

0.15 - 0.40 MeV region.
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Motivations

Potential scattering (think: OM + corrections)

Resonances (+ CN state properties, mixing, interference, subthreshold tails) Gerry Hale
Mark Paris

0.68 – 0.69%

ALSO:  The ENDF recommended values are deduced by
examination of the CN and not an individual reaction channel. 
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variations in 13C xs can have
major impact on the quoted uncertainties.

Modeling cross sections (even in the ‘plain’ regions) requires a huge amount of information.



En > 1.0 MeV n+13C elastic scattering angular distributions (preliminary)
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Angular distributions seem bland.

Detail is apparent if one examines 
Legendre expansion coefficients.



So far, we are 
extremely consistent with

OhioU values !

We need to 
go lower in energy

& 
check out the 4-5 MeV region

UK red
OU blue

Comparison of the ENDF8.0 Legendre Coefficients compared to 
the coefficients from the LANE1981 experimental measurements (preliminary).

Discrepancies btw current ENDF 
& 1981 experimental 

measurements.

20

There are
i) a number of CN levels   
ii) channel spin mixing.

Detail is apparent if one examines Legendre expansion coefficients.
Legendre coeffs contain info on reaction mechanism amplitudes.



13C @ 0.75 MeV

13C @ 0.60 MeV

1H @ 0.75 MeV

1H @ 0.60 MeV

1H @ 0.50 MeV

some measurement points <30o must be
rejected b/c  of gas cell - shielding geometry complications

Our usual H(n,n) xs normalization 
reaction, not usable En<0.6 MeV b/c 
scattered neutron energies become 
too low for our EJ301 detectors.

Above En = 1 MeV measurements go well

Below 1 MeV, challenges develop
which require more work.
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Stripping peaks in a consistent manner
is important for reducing fluctuations.

(i.e. I need to try again.)

Preliminary, 1st pass

Bars indicate the range of 
scattered neutron energies 
btw 30-150o.

digital DAQ provides 
more dynamic range

for scintillators



7Li

Thanks to OU

Originally the Smith ~1976

3.1 moles
99%



a difference of opinions

Daniel Araya
Mississippi State Univ

natLi measurements 2018, 2019
Price of enriched Li goes up 3x
OhioU loaned us enriched targets 2022

- - - targets didn’t have matching empty container.
Re-canned in March 2023
Re-measured in July 2023 with dDAQ, analysis w ROOT.

7Li
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7Li

n

g

Does anyone know what 
causes this in a digital DAQ 
system?

from Daniel

EJ301 or C6D6 liquid scintillator
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Return of (n,n’gg) 
Coincidence Measurements



26

Can the technique of Dynamic Biasing help in the 
modern world?

the idea:
Each channel in a nTOF spectrum is intended to 
represent a specific energy of scattered neutrons.

n’

Scintillator fluid

Using signals from forward recoiling protons 
reduces bckgnd & sharpens TOF peaks, especially 
for low energy n.

1960 Boring g-ray atten in samples

1971-x   dynamic biasing becomes popular

1970-1 Englebrecht methods for 
neutron atten and MS corrections.

1975 Velkey describes Monte Carlo methods
for correcting ang dist

1980-y  McEllistrem writes MULCAT

1980    MULCAT-BRC Lilley & MTM

1984   GAMBIT has been written by now.

Brandenberger & Grandy, NIM 93, 495 (1971)



Can the technique of Dynamic Biasing help in the 
modern world?

improves weak & overlapping peaks



Can the technique of Dynamic Biasing help in the 
modern world?

Brandenberger & Grandy, NIM 93, 495 (1971)



Projects in the Hopper

• 19F(n,n’g) w dDAQ

• 13C btw 4-5 MeV

• 51V(n,n’g) level scheme

• 50,53Cr(n,g) at DANCE

• Conversion of existing
data to n Emission Spectra

• 51V(n,n’g) level scheme

• 130,132,134,136Xe(n,g) at DANCE

• Return of (n,n’g-g) coincidence
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Cross Section Related Nuclear Structure Related
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It may be possible to subtract off the contribution from the 70Ge(n,g) 
with sample-in & sample-out information.

19F


