Quasi-Differential Neutron Scattering Measurements of ¹⁸¹Ta and Teflon from 1.5 to 20 MeV

Gregory Siemers^{1,3}, S. Singh¹, Y. Danon¹, A. Daskalakis², K. Cook^{1,2}, B. Wang¹, P. Brain^{1,3}, M. Rapp³

- 1. Rensselaer Polytechnic Institute Troy, NY 12180
- 2. Naval Nuclear Laboratory Niskayuna, NY 12309
- 3. Los Alamos National Laboratory Los Alamos, NM 87545

Presentation Overview

- 1. Motivation for the Experiments Performed
- 2. Upgrades to the Experimental Apparatus for Measurements
- 3. Quasi-Differential Experimental Methodology
 - a) Pulse Shape Discrimination
 - b) Validation Measurement of Carbon
- 4. Preliminary Results
- 5. Future Studies

Motivation for RPI Tantalum Experiment

- Due to special material and nuclear properties ¹⁸¹Ta is relied on for the following applications:
 - 1. Neutron-producing targets for linear accelerators
 - 2. Recovering Uranium from fuel reprocessing¹
 - 3. Casting of molten Plutonium metal¹
- ¹⁸¹Ta neutronics must be thoroughly understood to enhance the realms of scientific research, criticality safety, and national security

¹Chambers, A. (2023) - Five Year Execution Plan – United States Department of Energy Nuclear Criticality Safety Program FY2024 though FY 2028

Motivation for RPI Teflon (CF₂) Experiment

- Measuring Teflon allows for validation of the ¹⁹F evaluations
- Fluorine is relied on heavily in salts for Generation IV reactor concepts:
 - Kairos Power FHR
 - TerraPower SFR and Natrium
 - Flibe LFTR (blanket and coolant)
- Fluorine is an integral component of Uranium manufacturing/enrichment (UF₆)
- Criticality safety, design, and operation of these reactor concepts are highly dependent on ¹⁹F neutronics

The RPI High Energy Neutron Scattering System

Close-to-ideal neutron scattering array located ~30m from the neutron-producing target constructed with:

- I. Eight 5in diameter EJ-301 organic liquid scintillator proton recoil detectors
 - Coupled to Photonis XP4572/B PMTs
- II. Aluminum alloy detector mounting hardware and sample holder
- III. A rigidly secured optical table allowing for seemingly infinite detector arrangements

Upgrade to Struck SIS-3305 10-bit Digitizer

- System upgraded from Agilent-Acqiris AP240 8-bit to Struck SIS-3305 10-bit digitizer
 - Dynamic range of pulses increased from 256 bits to 1024 bits
 - Sampling resolution increased from 1.0ns to 0.8ns
- Upgrade yields increase in relative neutron detection efficiency of the system, largest gains in efficiency observed from 2 MeV – 20 MeV
- Comparison generated using pulse shape discrimination methods¹ different from the results presented in this work

¹A. M. Daskalakis, E. J. Blain, B. J. McDermott, R. M. Bahran, Y. Danon, D. P. Barry, R. C. Block, M. J. Rapp, B. E. Epping and G. Leinweber, "Quasi-differential elastic and inelastic neutron scattering from iron in the MeV energy range", *Annals of Nuclear Energy*, vol. 110, pp. 603 - 612, 2017

EJ-301 Detector Alignment Upgrade

Alignment procedure using a beamline-centered self-leveling laser, mirror, and optical coincidence implemented to more accurately position detectors for experiments.

Sample Holder Upgrade

New fabricated aluminum ring/sleeve and securing mechanism are more rigid than previous solution – reducing sample position uncertainty

Quasi-Differential Scattering Experimental Conditions and Data Analysis

Quasi-Differential Measurement Methodology

- 1. Conduct differential neutron time-of-flight experiment on sample of interest, validation sample, and open beam
 - Due to sample size, the experiment is dominated by multiple scattering interactions
- 2. Perform MCNP transport calculation of validation (Carbon) measurement using measured neutron flux and detector efficiencies
 - This validates experimental geometry and reproduction of known validations sample
- 3. Perform MCNP transport calculation of sample of interest measurement using measured neutron flux and detector efficiencies
 - Differences present in nuclear data evaluations of the sample of interest are compared to the experimental data to validate performance or show needs for improvement

Pulse Shape Discrimination

- Neutron and gamma pulses were separated based by the ratio of the tail integral of the pulse to the integral of the whole pulse
- Only pulse integrals above of 2000 were used for preliminary analysis

Detector Efficiency Determination

- EJ-301 detector efficiencies obtained from experiment and validated with SCINFUL
 - Further validated by reproducing detector efficiency measurement in MCNP6
 - The average neutron detection efficiency of all measurements was used in preliminary analysis

Validation Measurements of Carbon Sample

• An accurate quantification of the systematic uncertainty associated with the measurement has yet to be quantified, an arbitrary systematic uncertainty of 6% was used as an estimate from analyses performed on previous measurements^{1,2}

- 1. E. Blain, Y. Danon, D. P. Barry, B. E. Epping, A. Youmans, M. J. Rapp, A. M. Daskalakis and R. C. Block, "Measurements of Neutron Scattering from a Copper Sample Using a Quasi-Differential Method in the Region from 2 keV to 20 MeV", Nuclear Science and Engineering, vol. 196, no. 2, pp. 121-132, 2022, DOI:10.1080/00295639.2021.1961542
- 2. A. M. Daskalakis, E. J. Blain, B. J. McDermott, R. M. Bahran, Y. Danon, D. P. Barry, R. C. Block, M. J. Rapp, B. E. Epping and G. Leinweber, "Quasi-differential elastic and inelastic neutron scattering from iron in the MeV energy range", Annals of Nuclear Energy, vol. 110, pp. 603 612, 2017, DOI:10.1016/j.anucene.2017.07.007

Preliminary Results from ¹⁸¹Ta and Teflon Scattering Experiments

Preliminary Results From ¹⁸¹Ta Experiment

- First experiment presented is quasi-differential scattering measured from a 2.15*in* thick 3*in* diameter cylinder of ¹⁸¹Ta
- Over 75 hours of data were collected during this experiment to obtain a high degree statistical accuracy
- Nuclear data from the following evaluations were used in MCNP6 to perform the transport calculations of the experiment:
 - ENDF/B-VIII.0
 - ENDF/B-VIII.1 (Beta 2)
 - JEFF-3.3
 - JENDL-5.0
- The estimation of 6% systematic uncertainty was also applied to these data

Discussion on Preliminary ¹⁸¹Ta Results

- ENDF/B-VIII.1 beta 2 evaluation best agrees with experimental data
 - Shape of ENDF/B-VIII.1 beta 2 evaluation seems accurate at all angles, but magnitude issues observed at most forward angles
- Large disagreements observed with ENDF/B-VIII.0 and JEFF-3.3 evaluations below 3 MeV
- JENDL-5.0 evaluation follows experimental data and ENDF/B-VIII.I beta 2 in some places, but more disagreements observed compared to beta 2

Preliminary Results From Teflon Experiment

- First experiment presented is quasi-differential scattering measured from a 1.95*in* thick 3*in* diameter cylinder of Teflon
- Over 135 hours of data were collected during this experiment to obtain a high degree statistical accuracy
- Nuclear data from the following evaluations were used in MCNP6 to perform the transport calculations of the experiment:
 - ENDF/B-VIII.0
 - ENDF/B-VIII.1 (Beta 2)
 - INDEN (2022 Evaluation)
 - JEFF-3.3
 - JENDL-5.0
- The estimation of 6% systematic uncertainty was also applied to these data

Discussion on Preliminary Teflon Results

- INDEN and ENDF/B-VIII.1 beta 2 evaluations observed to have best agreement with experimental data
- Evaluation and experimental agreement for forward angles is acceptable
 - ENDF/B-VIII.0 and JEFF-3.3 performance inferior to other evaluations in most regions
- Poor agreement between all evaluations observed at 150-degree detectors
 - Largest issues in big resonances and 3.5-6 MeV energy region
- Issues observed between 2 MeV and 3 MeV in 125-degree detector
- Resonance missing in evaluations seen in 107-degree detector at 3.1 MeV

Future Studies Needed for Final Experimental Results

Discussion on Pulse Shape Discrimination

- Numerous pulse shape analysis methodologies are being explored at RPI to classify low integral pulses with high confidence
 - Goal: Increasing experimental region of interest to 0.5 MeV
- Methods being explored included:
 - 1. Pulse shape classification methods using reference pulse shapes for gammas and neutrons^{1,2}
 - 2. Supervised and unsupervised neural networks
 - 3. Fourier filtering and frequency domain-based pulse shape analyses
 - 4. Continuous wavelet transform pulse shape analyses

^{2.} A. M. Daskalakis, E. J. Blain, B. J. McDermott, R. M. Bahran, Y. Danon, D. P. Barry, R. C. Block, M. J. Rapp, B. E. Epping and G. Leinweber, "Quasi-differential elastic and inelastic neutron scattering from iron in the MeV energy range", *Annals of Nuclear Energy*, vol. 110, pp. 603 - 612, 2017, DOI:10.1016/j.anucene.2017.07.007

^{1.} A. M. Daskalakis, R. M. Bahran, E. J. Blain, B. J. McDermott, S. Piela, Y. Danon, D. P. Barry, G. Leinweber, R. C. Block, M. J. Rapp, R. Capote and A. Trkov, "Quasi-differential neutron scattering from ²³⁸U from 0.5 to 20 MeV", *Ann. Nucl. Energy*, vol. 73, pp. 455-464, 2014, DOI:10.1016/j.anucene.2014.07.023

Improvements to MCNP Modeling

- Improvements to the MCNP modeling of the experimental geometry are needed to further reduce the systematic uncertainty of the experiment using the normalization factor technique
- Modeling of open beam needs improvement at 150-degree detector locations

Current Results

Future Implementation

NAVAL NUCLEAR

Acknowledgements

This work has been supported in part by:

- U.S. Nuclear Regulatory Commission (NRC-HQ-60-17-G-0006)
- Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the U.S. Department of Energy
- Naval Nuclear Laboratory

