

News from CMS

PDF4LHC meeting | CERN | 23 November 2022

Daniel Savoiu on behalf of the CMS Collaboration

Jets for precision QCD

- core part of the experimental QCD program at the LHC
- measurements at \sqrt{s} = 13 TeV together with fixed-order pQCD theory at NNLO provide important input for determinations of PDFs and the strong coupling constant $\alpha_s(m_z)$

inclusive jet production:

• directly sensitive to PDFs and $\alpha_s(m_z)$

dijet production:

 topology provides handle on PDFs over wide range in momentum fraction x

Inclusive jet production

- measurement from CMS at 13 TeV was published earlier this year [1]
 - double-differential in jet p_T , |y| with R = 0.4 & R = 0.7
 - R = 0.7 data used for PDF + $\alpha_s(m_z)$ fits @ NNLO

- theory predictions at NNLO pQCD
 - *NNLOJET* + *fastNLO* interpolation grids
 - NLO grids + binwise NNLO K factors

 $\alpha_{\rm s}(m_{\rm Z})$ = **0.1170** (**14**)_{fit} (**8**)_{scale} (**7**)_{model} (**1**)_{param}

Inclusive jet production

- measurement from CMS at 13 TeV was published earlier this year [1]
 - double-differential in jet p_T , |y| with R = 0.4 & R = 0.7
 - R = 0.7 data used for PDF + $\alpha_s(m_7)$ fits @ NNLO
- addendum accepted by JHEP (on arXiv as an Appendix to v3)

 $\alpha_{\rm s}(m_7) = 0.1166 (14)_{\rm fit} (4)_{\rm scale} (7)_{\rm model} (1)_{\rm param}$

- **NNLOJET** + **fastNLO** interpolation grids
- K Factors → NNLO grids [2]

^[1] CMS Collaboration, "Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at \sqrt{s} = 13 TeV", JHEP **02** (2022) 142, arXiv: 2111.10431

^[2] D. Britzger et al. "NNLO interpolation grids for jet production at the LHC", Eur. Phys. J. C 82 (2022) 10, doi:10.1140/epjc/s10052-022-10880-2, arXiv:2207.13

Inclusive jet production

improved fit quality using full NNLO grids

update

		HERA-only	HERA+CMS	HERA+CMS
Data sets		Partial $\chi^2/N_{ m dp}$	Partial $\chi^2/N_{\rm dp}$	Partial $\chi^2/N_{\rm dp}$
HERA I+II neutral current	e^+p , $E_p = 920 \text{GeV}$	378/332	375/332	376/332
HERA I+II neutral current	e^+p , $E_p = 820 \text{GeV}$	60/63	60/63	60/63
HERA I+II neutral current	e^+p , $E_p = 575 \text{GeV}$	201/234	201/234	202/234
HERA I+II neutral current	e^+p , $E_p = 460 \text{GeV}$	208/187	209/187	209/187
HERA I+II neutral current	e^-p , $E_p = 920 \text{GeV}$	223/159	227/159	227/159
HERA I+II charged current	e^+p , $E_p = 920 \text{GeV}$	46/39	46/39	46/39
HERA I+II charged current	e^-p , $E_p = 920 \text{GeV}$	55/42	56/42	56/42
CMS inclusive jets 13 TeV	0.0 < y < 0.5	_	13/22	8.6/22
	0.5 < y < 1.0	_	31/21	23/21
	1.0 < y < 1.5	_	18/19	13/19
	1.5 < y < 2.0	_	14/16	14/16
Correlated χ^2		66	83	81
Global $\chi^2/N_{\rm dof}$		1231/1043	1321/1118	1302/1118

Dijet production

- new set of measurements of the *dijet cross section* at \sqrt{s} = 13 TeV in preparation from CMS
 - extensive set of multi-differential measurements for several combinations of jet radii R and observables

Measurement strategy

dijet event selection with

$$p_{\text{T,jet 1}}$$
 > 100 GeV $p_{\text{T,jet 2}}$ > 50 GeV

 cross section measured as a function of dijet invariant mass and average transverse momentum

$$m_{1,2}$$
 = 249–10050 GeV $\langle p_T \rangle_{1,2}$ = 147–2702 GeV

- simultaneous unfolding in all observables
 - well-conditioned response, no regularization
- dominant systematic uncertainty (4–20%) from determination of the *jet energy scale*

Theory predictions

- perturbative QCD predictions at NNLO from NNLOJET [1]
 - available as **fastNLO** interpolation grids^[2] taking into account full dependence on α_s , μ_R , μ_F ^[1]
 - central scale choice: $\mu_R = \mu_F = m_{1,2}$ (dijet invariant mass)
 - NNLO part at leading color

- mostly good perturbative convergence
 - higher-order results mostly within scale uncertainty of previous order
 - plot shows R = 0.4, convergence better for R = 0.8
 - reduction of scale uncertainty @ NNLO

^[1] T. Gehrmann et al. "Jet cross sections and transverse momentum distributions with NNLOJET", PoS RADCOR2017 (2018) 074, doi:10.22323/1.290.0074, arXiv:1801.06415

^[2] D. Britzger et al. "NNLO interpolation grids for jet production at the LHC", Eur. Phys. J. C 82 (2022) 10, doi:10.1140/epjc/s10052-022-10880-2, arXiv:2207.13735

Theory corrections

correction factors are applied to the theory predictions to account for effects beyond perturbative QCD

Nonperturbative

1.00 - anti-k_T (R=0.8)

500

1000

1.10

1.05

Electroweak

13 TeV

virtual W/Z boson exchanges

- from 8 different configurations
- study effect of MC code (Herwig vs Pythia), perturbative order (LO vs NLO) and tune

5000

 $m_{1,2}$ (GeV)

2000

Comparison to theory calculations

good data/theory agreement better for R = 0.8 than R = 0.4

PDF determination strategy

procedure based on *HERAPDF2.0* analysis^[1], similar to CMS 13 TeV *inclusive jet* analysis ^[2]

- [1] H1, ZEUS Collaborations. "Combination of measurements of inclusive deep inelastic e[±]p scattering cross sections and QCD analysis of HERA data", Eur. Phys. J. C **75** (2015) 12, arXiv:1506.06042
- [2] CMS Collaboration, "Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$ ", JHEP **02** (2022) 142, <u>arXiv:2111.10431</u>
- fit deep inelastic scattering (DIS) data from HERA in addition to the CMS dijet jet measurements
 - limit DIS data to $Q^2 > 10 \text{ GeV}^2$ to minimize impact of higher-twist corrections
- PDFs are parametrized by the general form

$$x f(x) = A_f x^{B_f} (1-x)^{C_f} (1 + D_f x + E_f x^2)$$

- f = gluon g, valence quarks $\mathbf{u}_{v}/\mathbf{d}_{v}$, sea quarks $\bar{\mathbf{U}}/\bar{\mathbf{D}}$
- A, B & C parameters always included (some fixed by sum rules)
- **D** & **E** parameters added as needed based on χ^2 scan

with CMS jet data: probe & refine gluon PDF in high-x region

Final parametrizations

 χ^2 scan results in similar parametrizations for fits with 2D and 3D dijet data

Uncertainties on PDFs

fit *Hessian* uncertainty from fit

model

variations of non-PDF parameters

	Parameter	Value	Variations	
Q ² cut for DIS data	$Q^2_{\rm min}$ [GeV ²]	10	7.5	12.5
strangeness fraction	f_{s}	0.4	0.3	0.5
c quark mass	M _c [GeV]	1.43	_	1.49
<i>b</i> quark mass	M_b [GeV]	4.5	4.25	4.75
starting scale	$\mu^2_{F,0}[GeV^2]$	1.9	1.6	_

scale

missing higher orders in perturbation theory

param

envelope of fits with alternative parametrizations

Uncertainties on PDFs

Uncertainties on PDFs

• additional fits where **strong coupling constant** $\alpha_s(m_Z)$ is determined simultaneously with PDFs:

 $\chi^2/n_{\rm dof} = 1280.47/1093 =$ **1.172**

$$\alpha_{\rm s}(m_{\rm Z}) = 0.1201 (12)_{\rm fit} (8)_{\rm scale} (8)_{\rm model} (5)_{\rm param} | (21)_{\rm total}$$

$$\alpha_{\rm s}(m_{\rm Z})$$
 = **0.1201** (**10**)_{fit} (**5**)_{scale} (**8**)_{model} (**6**)_{param} | (**20**)_{total}

 $\chi^2/n_{\text{dof}} = 1553.27/1166 = 1.332$

ca. 1 standard deviation away from world average value:

$$\alpha_{\rm s}(m_{\rm Z})$$
 = **0.1179** (10)_{total}

impact of subleading-color
NNLO contribution not known yet

Summary

- updated results for QCD analysis of inclusive jet cross sections at 13 TeV (addendum in preparation)
 - using recently-published NNLO interpolation grids
 - precision on strong coupling constant improved compared to previous result using *K* factors

Incl
$$\alpha_s(m_Z) = 0.1166 (14)_{fit} (4)_{scale} (7)_{model} (1)_{param}$$

- extensive differential measurements of dijet cross sections at 13 TeV in preparation
 - double- & triple-differential
- jets with R = 0.4 & R = 0.8 vs. invariant mass $m_{1,2} \& \text{avg. transverse momentum } \langle p_T \rangle_{1,2}$
- QCD analysis of **double-** (2D) and **triple-differential** (3D) cross sections vs. $m_{1,2}$ (R = 0.8)
 - inclusion of CMS data results in improved constraints on gluon PDFs
 - strong coupling constant determined simultaneously with PDFs

$$\alpha_{\rm s}(m_{\rm Z}) =$$
0.1201 (12)_{fit} (8)_{scale} (8)_{model} (5)_{param}

$$\alpha_{\rm s}(m_{\rm Z}) =$$
 0.1201 (10)_{fit} (5)_{scale} (8)_{model} (6)_{param}

Thank you for your attention!