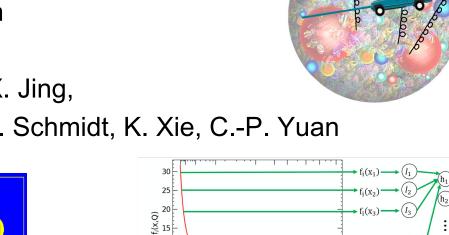
Update from CTEQ-TEA

Pavel Nadolsky

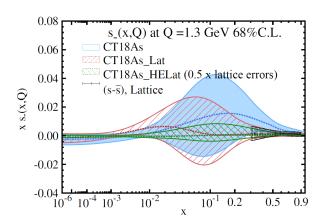
Southern Methodist University, USA

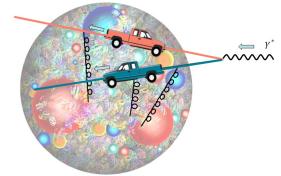
With CTEQ-TEA (Tung Et. Al.) working group


China: A. Ablat, S. Dulat, J. Gao, T.-J. Hou,

I. Sitiwaldi, and M. Yan

Mexico: A. Courtoy


USA: T.J. Hobbs, M. Guzzi, X. Jing,

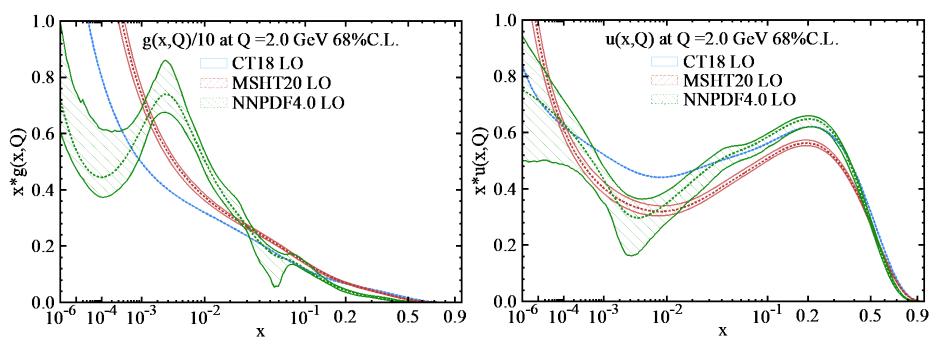

J. Huston, H.-W. Lin, C. Schmidt, K. Xie, C.-P. Yuan

Output Layer

Hidden Layer

CTEQ-TEA recent results

1. Finished

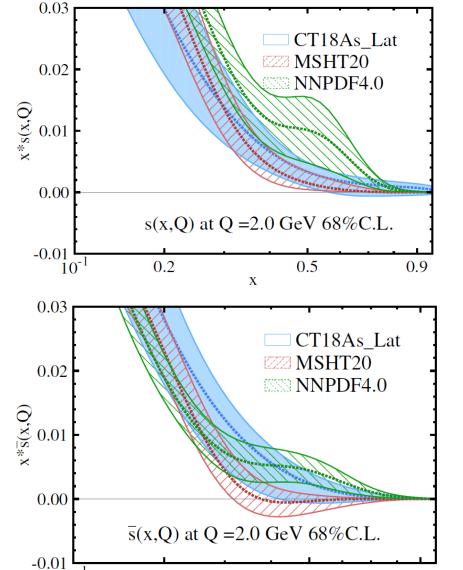

- ☑ CT18 LO: LO analysis for Monte Carlo event generators
- ☑ CT18 CS: Two-component sea (anti)quark PDFs with lattice inputs
- ☑ CT18 As: Strangeness asymmetry and PDFs with lattice inputs
- ☑ CT18 FC: NNLO constraints on fitted/intrinisic charm
- ☑ CT18 & SMEFT: Machine learning and SMEFT in CT18 framework
- The sampling paradigm to understand PDF tolerance ⇒ A. Courtoy's talk
- CT18qed: Including photon as a parton of the proton
- The NNLO CC DIS calculation in SACOT-MPS scheme
- Large-x PDFs
- Deuteron and nuclear corrections
- SeaQuest (E906) and STAR constraints on sea quarks

reported at other meetings

2. Ongoing:

- ✓ Impact of the LHC $t\bar{t}$ production
- Impact of the LHC Drell-Yan production
- PDFs at small x: Forward charm and bottom production; FPF

CT18 LO parton distributions M. Yan et al., arXiv:2205.00137 Complement CT18 NNLO and NLO PDFs


* From the CT18 data set, exclude

- H1 F_L structure function
- H1 bottom reduced cross section
- Combined HERA charm production
- ATLAS 8TeV Z boson p_{T}^{ll} distribution
- ATLAS 7TeV W/Z rap. distributions, and $A_{\rm ch.}$ with $\int dt \, \mathcal{L} = 35 \; \rm pb^{-1}$

* Apply a K-factor to Drell-Yan data

$$K(Q) = 1 + \frac{\alpha_s(Q)C_F\pi^2}{\pi}$$

* We do not provide error sets for CT18 LO because of its very large theoretical uncertainties. CT18As_Lat NNLO: Strangeness asymmetry with a lattice QCD constraint

0.5

X

0.9

 10^{-1}

0.2

T.-J. Hou et al., arXiv: 2211.11064

CT18As: CT18A with $s_- \equiv s - \bar{s} \neq 0$

CT18As_Lat: CT18As with a lattice constraint on $s_{-}(x)$ at $0.3 \le x \le 0.8$.

$$\int_{0}^{0.08} s_{-}(x)dx = 0$$
0.08
$$s_{-}(x,Q) \text{ at } Q = 2.0 \text{ GeV } 68\%\text{C.L.}$$
0.06
$$CT18\text{As_Lat}$$
MSHT20
$$0.02$$
0.00
$$0.02$$
0.00
$$-0.02$$

$$0.04$$

$$0.04$$

$$0.04$$

$$0.04$$

$$0.04$$

$$0.04$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

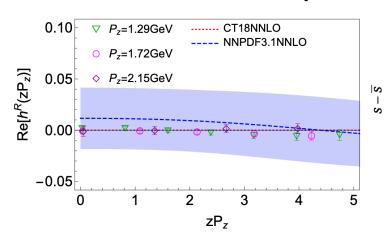
$$0.00$$

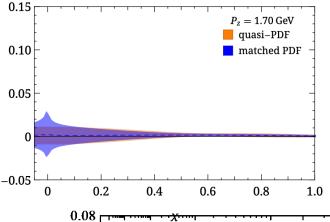
$$0.00$$

$$0.00$$

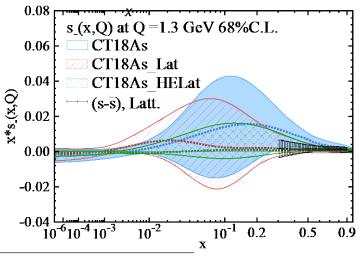
$$0.00$$

$$0.00$$


$$0.00$$

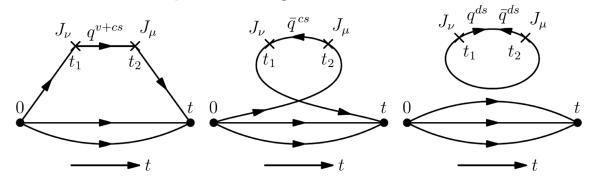

$$0.00$$

CT18As_Lat NNLO


T.-J. Hou et al., arXiv: 2211. 11064

Include lattice data on s_{-} obtained by the MSULat/quasi-PDF method (Lin et al, 2005.12015)

- * The lattice prediction disfavors a large $s_{-}(x, Q)$ at x > 0.3
- * CT18As_HELat: PDFs if the lattice errors are reduced by 1/2

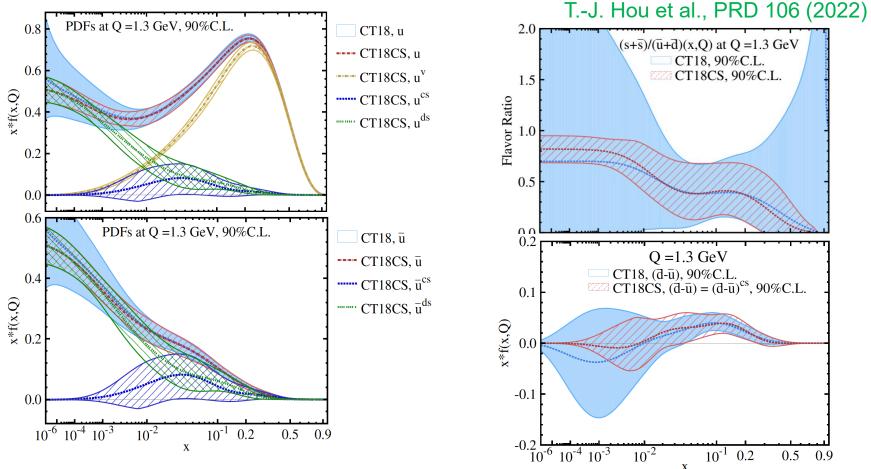

Q = 2.0 GeV	CT18A	CT18As	CT18As_Lat	LQCD			
				0.052(12) [50]			
$\langle x \rangle_{s_+}$	0.043(10)	0.052(17)	0.048(16)	0.051(26)(5) [51]			
P. Nadolsky, PDF4LHC Meeting							

CT18CS: two-component sea (anti)quark PDFs

In lattice QCD:

T.-J. Hou et al., PRD 106 (2022)

 \bar{u} and \bar{d} PDFs consist of connected (cs) and disconnected (ds) components. $\int dx \ \left(\bar{d}(x) - \bar{u}(x)\right) \neq 0 \text{ can be generated from connected 4-point}$ configurations in Euclidean path-integral formalism (K. F. Liu et al., PRD 62 (2000)).


In CT18CS, sea quark is parametrized with both CS and DS components at $Q=1.3{\rm GeV}$:

-
$$u = u_v + \bar{u}$$
, $\bar{u} = u^{cs} + q^{ds}$
- $d = d_v + \bar{d}$, $\bar{d} = d^{cs} + q^{ds}$
- $s = \bar{s} = s^{ds} = q^{ds}/R$
- a constraint from lattice

$$\frac{1}{R} = \frac{\langle x \rangle_{s+\bar{s}}}{\langle x \rangle_{s+\bar{s}}} = 0.822(69)(78)$$

-
$$x \to 0$$
:
 $q^{ds} \propto x^{-1}$; u^{cs} , $d^{cs} \to u_v$, d_v ;
 $\bar{d}/\bar{u} \to 1$;
- $x \to 1$:
 $d/u \to d/u$ of CT18
 $\bar{d}/\bar{u} \to \bar{d}/\bar{u}$ of CT18

CT18CS: two-component sea (anti)quark PDFs

The CT18CS PDF provide direct comparison between lattice calculations and global analysis for each partonic degree of freedom.

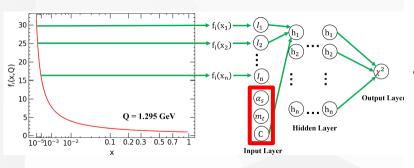
PDF	$ \langle x \rangle_{u^v}$	$\langle x \rangle_{d^v}$	$\langle x \rangle_g$	$\langle x \rangle_{\bar{u}}$	$\langle x \rangle_{\bar{d}}$	$\langle x \rangle_s$
CT18	0.325(5)	0.134(4)	0.385(10)	0.0284(22)	0.0361(27)	0.0134(52)
CT18CS	0.323(4)	0.136(3)	0.384(12)	0.0287(25)	0.0364(34)	0.0137(39)
PDF	$ < x>_{u^{v+cs}}$	$< x>_{d^{v+cs}}$	$< x>^*_{\bar{u}^{cs}}$	$\langle x \rangle_{\bar{d}^{cs}}^*$	$\langle x \rangle_{u^{ds}}^{\dagger}$	
CT18CS	0.335(7)	0.155(8)	0.0120(64)	0.0197(70)	0.0167(49)	

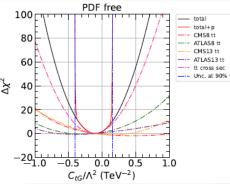
CTEQ-TEQ global analysis of SMEFT

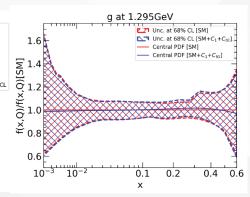
[J. Gao, MS Gao, T. Hobbs, DY Liu, XM Shen, 2211.01094]

◆ In search for new physics at hadron colliders, one key problem is on the degeneracy of PDF variations and the new physics contributions.

Described in the framework of **SMEFT**

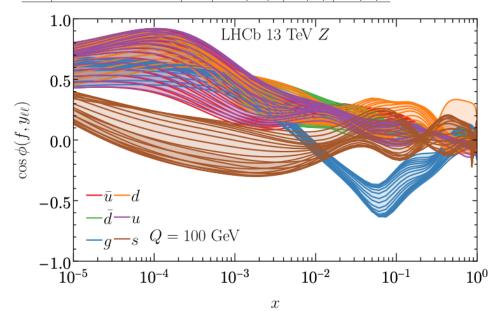

Joint fits of both PDFs and BSM parameters

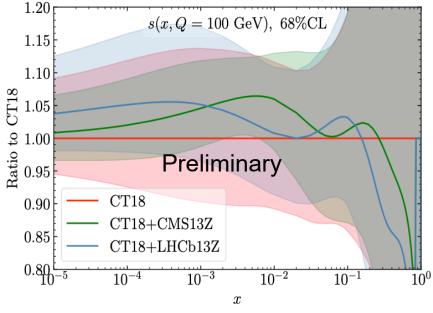

• We focus on several operators relevant for top-quark pair $(O_{tu}^1, O_{td}^1, O_{tG}, O_{tq}^8)$ and jet production (O_1) at hadron colliders.


$$O_{tu}^{1} = \sum_{i=1}^{2} (\bar{t}\gamma_{\mu}t)(\bar{u}_{i}\gamma^{\mu}u_{i}), \qquad O_{td}^{1} = \sum_{i=1}^{3} (\bar{t}^{\mu}t)(\bar{d}_{i}\gamma_{\mu}d_{i}), \qquad O_{1} = 2\pi(\sum_{i=1}^{3} \bar{q}_{Li}\gamma_{\mu}q_{Li})(\sum_{j=1}^{3} \bar{q}_{Lj}\gamma^{\mu}q_{Lj})$$

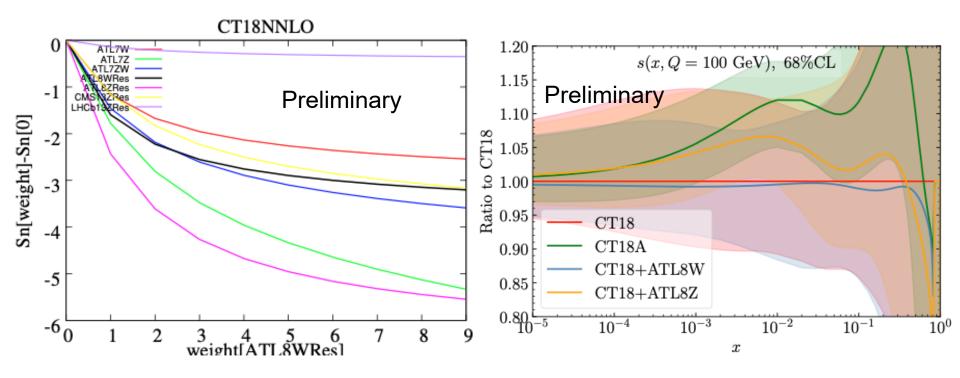
$$O_{tG} = ig_s (\bar{Q}_{L,3} \tau^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^A + \text{ h.c.}, \qquad O_{tq}^8 = \sum_{i=1}^2 (\bar{Q}_i \gamma_\mu T^A Q_i) (\bar{t} \gamma^\mu T^A t)$$

◆ We obtain self-consistent constraints on SMEFT with Lagrange Multiplier scans based on the Neural Network approach.


◆ We find mild correlations between the extracted Wilson coefficients, PDFs, and other QCD parameters.


Impact of New LHC Drell-Yan data on CT18 PDFs

	_			2/			
ID	Expt.	$N_{ m pt}$	χ^2	$\chi^2/N_{ m pt}$	S_E		
CT14HERA2 data							
201	E605DY	119	103.4(102.4)	0.9(0.9)	-1.0(-1.1)		
203	E866 $\sigma_{pd}/(2\sigma_{pp})$	15	16.1(17.9)	1.1(1.2)	0.3(0.6)		
204	E866 $Q^3\mathrm{d}^2\sigma_{pp}/(\mathrm{d}Q\mathrm{d}x_F)$	184	244(240)	1.3(1.3)	2.9(2.7)		
225	$CDF1Z\ A(e)$	11	9.0(9.3)	0.8(0.8)	-0.3(-0.2)		
227	$CDF2W\ A(e)$	11	13.5(13.4)	1.2(1.2)	0.6(0.6)		
234	$D \varnothing 2W \ A(\mu)$	9	9.1(9.0)	1.0(1.0)	0.2(0.1)		
260	DØ2Z $y_{\ell\ell}$	28	16.9(18.7)	0.6(0.7)	-1.7(-1.3)		
261	CDF2Z $y_{\ell\ell}$	29	48.7(61.1)	1.7(2.1)	2.2(3.3)		
266	CMS7W $A(\mu)$	11	7.9(12.2)	0.7(1.1)	-0.6(0.4)		
267	CSM7W $A(e)$	11	4.6(5.5)	0.4(0.5)	-1.6(-1.3)		
268	$ATL7WZ_{(2012)}$	41	44.4(50.6)	1.1(1.2)	0.4(1.1)		
281	$D extstyle{ iny 2W} \stackrel{\lambda}{A} (e)^{'}$	13	22.8(20.5)	1.8(1.6)	1.7(1.4)		
New LHC data							
245	LHCb7WZ (μ)	33	53.8(39.9)	1.6(1.2)	2.2(0.9)		
246	LHCb8Z(e)	17	17.7(18.0)	1.0(1.1)	0.2(0.3)		
248	$ATL7WZ_{(2016)}$	34	287.3(88.7)	8.4(2.6)	13.7(4.8)		
249	CMS8W $A(\mu)$	11	11.4(12.1)	1.0(1.1)	0.2(0.4)		
250	LHCb8WZ (μ)	34	73.7(59.4)	2.1(1.7)	3.7(2.6)		
253	ATL8ZpT ´	27	30.2(28.3)	1.1(1.0)	0.5(0.3)		


- Drell-Yan data play the essential role at constraining (anti)quark sea
- Most of the Drell-Yan data are fitted fairly
- LHCb can constrain the small-x region.
- > The LHCb and CMS 13 TeV Z data are not fitted well

#ID	Experimental data set	N_{pt}	$N_{\rm corr}$	χ^2/N_{pt}	R^2
211	ATL8W	22	45	2.78	16.7
212	CMS13Z	12	6	3.39	12.4
213	LHCb13Z	18	6	4.07	7.97
214	AL8Z3D	188	278	1.16	20.8

Consistency between the ATLAS 7/8 TeV W & Z data

Message from CT18/A fits

- ATLAS 7 TeV W/Z precision data are in tension with other data, especially HERA and NuTeV
- We provide alternative fits CT18A/Z to include ATLAS 7 TeV W/Z data

Post-CT18 data

- With the help from ATLAS group, we can fit ATLAS 8 Z data well
- ATLAS 8 TeV W (Z) data are consistent with 7 TeV W (Z) data
- Z data have strong impact on the strangeness, are consistent with ATLAS 7 TeV Z data

Impact of LHC 13 TeV $t\bar{t}$ production on CT18 PDFs

Extensive analysis in which the impact of 1D absolute distributions is explored

			ePump updated Chi2/Npt		Global fit Chi2/Npt		
Exp	Obs	Npt	HT	HT/2	HT/4	HT/2	HT/4
	mtt	9	1.749	1.574	1.601	1.532026	1.4691
	HTtt	11	1.982	1.769	1.585	1.499361	1.74098
	ytt	12	1.279	1.15	0.938	1.051071	1.07351
	pTt1	10	1.301	1.185	1.118	1.196207	1.33326
	pTt2	8	1.132	0.843	1.047	0.84058	1.59056
CMS dilepton channel 35.9 fb^-1	mtt	7	3.457	3.068	3.142	3.121005	3.22675
	ytt	10	1.66	0.969	0.679	0.938607	0.67252
	pTt	6	3.598	3.701	3.679	3.558017	3.04841
	yt	10	1.334	0.944	0.867	1.002635	0.68848
ATLAS lepton + jet 36 fb^-1	mtt	7	2.395	1.165	0.681	0.826805	0.65684
	ytt	10	0.909	0.69	0.621	0.740418	0.74866
	pTt	6	2.337	2.012	2.469	1.353523	1.43062
	yt	10	1.298	1.073	1.095	1.161363	0.68198
CMS lepton + jet 137 fb^-1	mtt	15	1.485	1.383	1.808	1.203901	1.66676
	ytt	10	6.469	6.238	6.424	6.005668	5.87508
	· · · · · · · · · · · · · · · · · · ·						

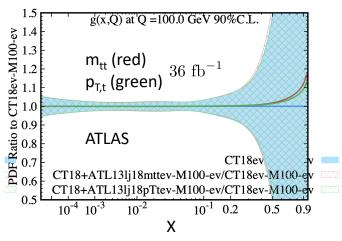
ATLAS all hadronic, JHEP 01 (2021) 033, arXiv:2006.09274 ATLAS lepton + jets, EPJC 79 (2019) 1028, arXiv:1908.07305 CMS dilepton, JHEP 1902 (2019) 149, arXiv:1811.06625 CMS lepton + jets, PRD 104 092013 (2021), arXiv:2108.02803

A. Ablat, S. Dulat, M. Guzzi, T.-J. Hou, I. Sitiwaldi, K. Xie, and C.-P. Yuan

Correlated Systematic Uncertainties:

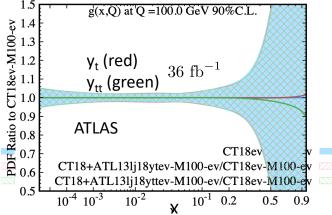
ATLAS -> nuisance parameters

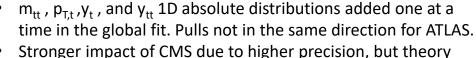
CMS -> Covariance matrix representation (converted to nuisance param.)


Statistical correlations not provided

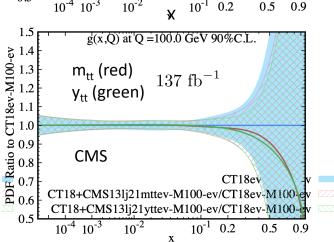
data added one at a time on top of the CT18 baseline

Impact of LHC 13 TeV $t\bar{t}$ production on CT18 PDFs


Global analysis: Impact on g(x,Q) from ATLAS and CMS lep+jets

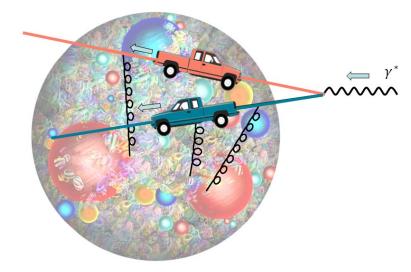


Theory predictions:


- MATRIX (Catani, Grazzini et al. PRD 2019)
- FastNNLO (Czakon, et al. 1704.08551)

Blue band: CT18NNLO 90%CL Hatched band: CT18+new data

- Stronger impact of CMS due to higher precision, but theory description not optimal for all distributions.
- Impact of different scale choices (HT/2 and HT/4) explored.
- Overall, 13 TeV data seem to prefer a softer gluon at large x.

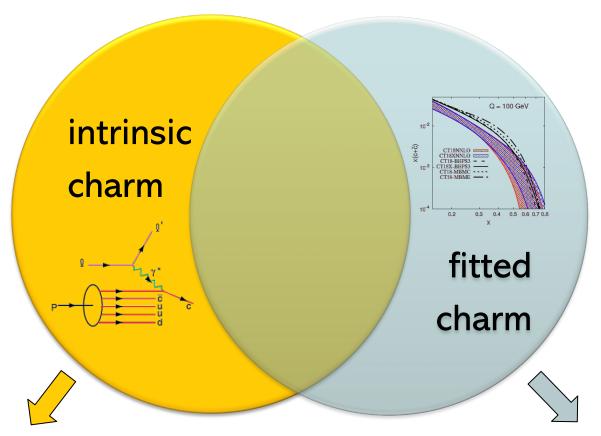


CT18FC

Proton's intrinsic charm remains concealed

- 1. T.-J. Hou et al., JHEP 02 (2018) 059; 57 pages, 19 figures: QCD factorization with the NP charm and CT14 IC NNLO pheno analysis
- 2. M. Guzzi, T. J. Hobbs, K. Xie, et al., arXiv:2211.01387; 10 pages: **new** CT18 FC analysis with the LHC Run-1 and 2 data

A recorded ILCAC seminar at https://indico.knu.ac.kr/event/626/



Do global PDF fits constrain intrinsic charm?

"Fitted charm" is a more direct term to describe the charm PDF found in the global QCD fit

Analog: the fitted charm mass

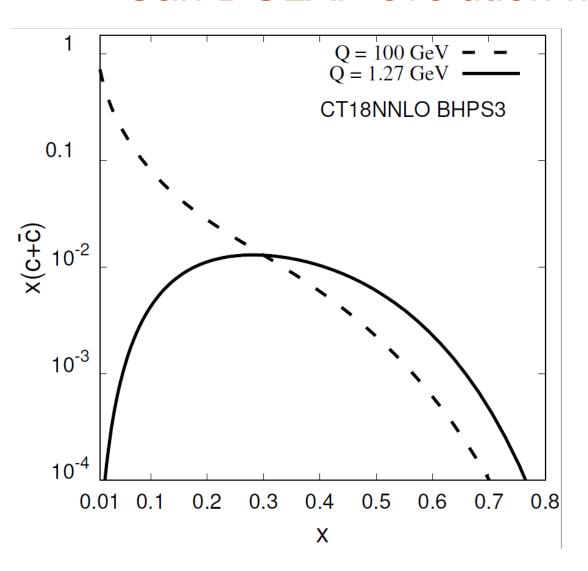
- The concept of nonperturbative methods
- Can refer to a component of the hadronic Fock state or the type of the hard process
- Predicts a typical enhancement of the charm PDF at $x \ge 0.2$

- A charm PDF parametrization at scale $Q_0 \approx 1$ GeV found by global fits [CT, NNPDF, ...]
- Arises in perturbative QCD expansions over α_s and operator products
- May absorb process-dependent or unrelated radiative contributions

PDF fits may include a ``fitted charm'' PDF

``Fitted charm'' = ``higher-twist charm'' + other (possibly not universal) higher $O(\alpha_s)$ / higher power terms

QCD factorization theorem for DIS structure function F(x, Q) [Collins, 1998]:


All
$$\alpha_s$$
 orders:
$$F(x,Q) = \sum_{a=0}^{N_f} \int_x^1 \frac{d\xi}{\xi} \, \mathcal{C}_a\left(\frac{x}{\xi}, \frac{Q}{\mu}, \frac{m_c}{\mu}; \alpha(\mu)\right) \, f_{a/p}(\xi,\mu) + \mathcal{O}(\Lambda^2/m_c^2, \Lambda^2/Q^2).$$

The PDF fits implement this formula up to (N)NLO ($N_{ord} = 1$ or 2):

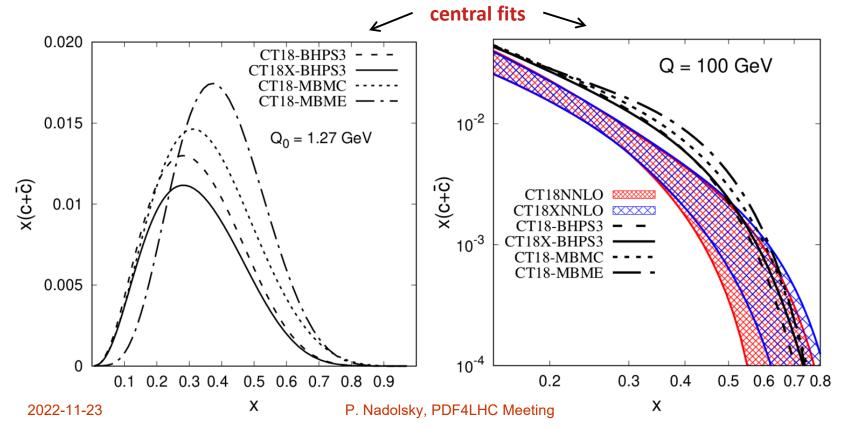
PDF fits:
$$F(x,Q) = \sum_{a=0}^{N_f} \int_x^1 \frac{d\xi}{\xi} \, \mathcal{C}_a^{(N_{ord})} \left(\frac{x}{\xi}, \frac{Q}{\mu}, \frac{m_c}{\mu}; \alpha(\mu) \right) \, f_{a/p}^{(N_{ord})}(\xi, \mu).$$

The leading-power charm PDF component cancels at $Q \approx m_c$ up to a higher order The 'fitted charm component' may approximate for missing terms of orders α_s^p with $p > N_{ord}$, or Λ^2/m_c^2 , or Λ^2/Q^2

Can DGLAP evolution mimic an FC?

Data constrain the PDFs at Q > 2 GeV.

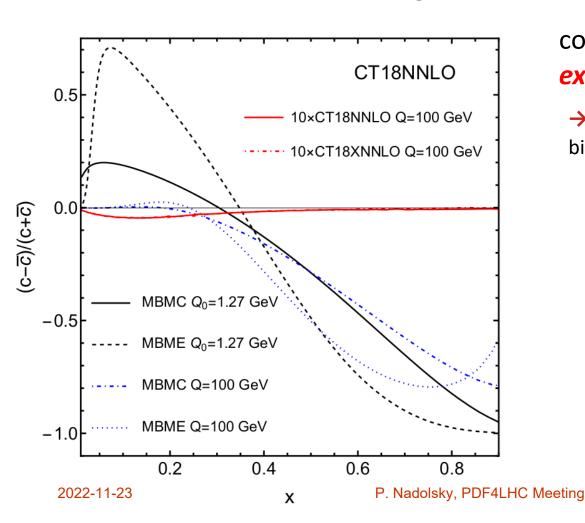
When PDFs are evolved at N2LO down to $Q \approx 1.3$ GeV, the charm PDF is increased at $x \gtrsim 0.3$ and decreased at $x \lesssim 0.3$.


Either a genuine IC or missing higher orders in DGLAP evolution can produce a bump-like shape of FC at $Q \sim m_c$.

CT18 FC total charm PDFs

FC scenarios traverse range of high-x behaviors from IC models

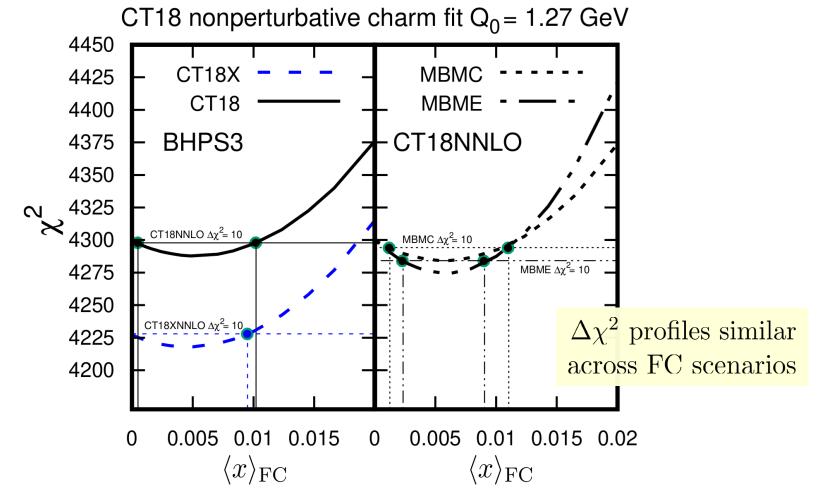
- → fit implementation of BHPS from CT14IC (BHPS3) on CT18 or CT18X (NNLO)
- → fit two MBMs: MBMC (confining), MBME (effective mass) on CT18


investigate constraints from newer LHC data in CT18

possible charm-anticharm asymmetries

pQCD only very weakly breaks $c=\bar{c}$ through HO corrections

- → large(r) charm asymmetry would signal nonpert dynamics, IC
- \rightarrow MBM breaks $c=\bar{c}$ through hadronic interactions


consider two MBM models as examples (not predictions)

→ asymptotically small, but ratio can be bigger; will be hard to extract from data

signal for FC in CT18 study, but with shallower $\Delta\chi^2$ than CT14 IC

FC uncertainty quantified by normalization via $\langle x \rangle_{\mathrm{FC}}$ for each input IC model

$$\rightarrow \langle x \rangle_{\rm FC} \approx 0.5\% \ (\Delta \chi^2 \gtrsim -25) \ {\rm vs.} \ \langle x \rangle_{\rm FC} \approx 0.8 - 1\% \ (\Delta \chi^2 \gtrsim -40) \ {\rm CT14 \ IC}$$

FC PDF moments

moments of the FC PDFs often used to characterize magnitude, asymmetry

$$\langle x^n \rangle_{c^{\pm}} = \int_0^1 dx \, x^n (c \pm \bar{c})[x, Q]$$

$$\langle x \rangle_{\rm FC} \equiv \langle x \rangle_{\rm c^+} [Q_0 = 1.27 \,{\rm GeV}]$$

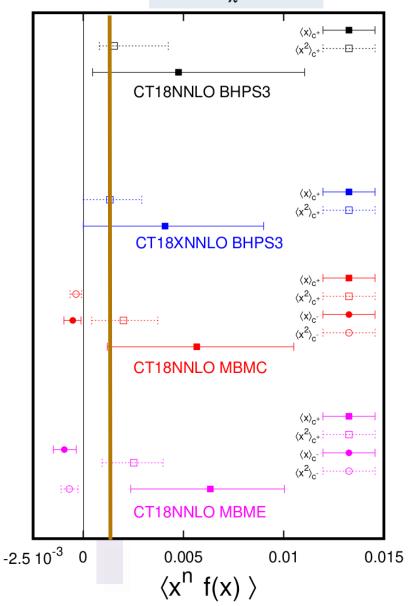
...at NNLO.

$$= 0.0048 + 0.0063 + 0.0063 + 0.0048 +$$

$$= 0.0041^{+0.0049}_{-0.0041} (^{+0.0091}_{-0.0041}), \text{ CT18X (BHPS3)}$$

$$=0.0057^{+0.0048}_{-0.0045} \left(\frac{+0.0084}{-0.0057} \right), \text{ CT18 (MBMC)}$$

$$= 0.0061^{+0.0030}_{-0.0038} \left(\frac{+0.0064}{-0.0061} \right), \text{ CT18 (MBME)}$$


$$\Delta \chi^2 \le 10$$

$$\Delta \chi^2 \le 30$$

(restrictive tolerance)

(~CT standard tolerance)

Nonperturbative charm moments $Q_0 = 1.27$ GeV Intervals of $\Delta \chi^2 < 10$

FC PDF moments

even restrictive uncertainties give moments consistent with zero

- broaden further for default CT tol.
- \rightarrow lattice may give $\langle x \rangle_{c^+}$, $\langle x^2 \rangle_{c^-}$

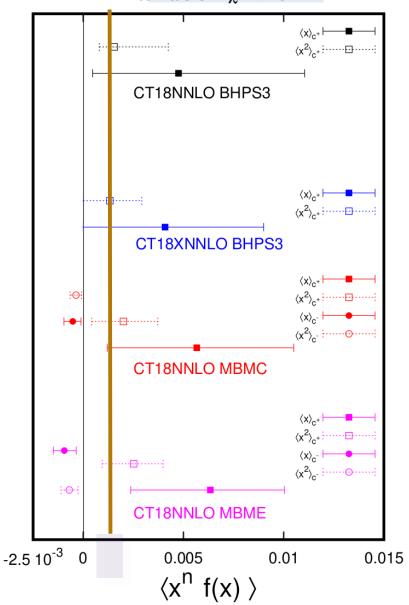
$$\langle x \rangle_{\rm FC} \equiv \langle x \rangle_{\rm c^+} [Q_0 = 1.27 \,{\rm GeV}]$$

$$= 0.0048 + 0.0063 + 0.0063 + 0.0048 +$$

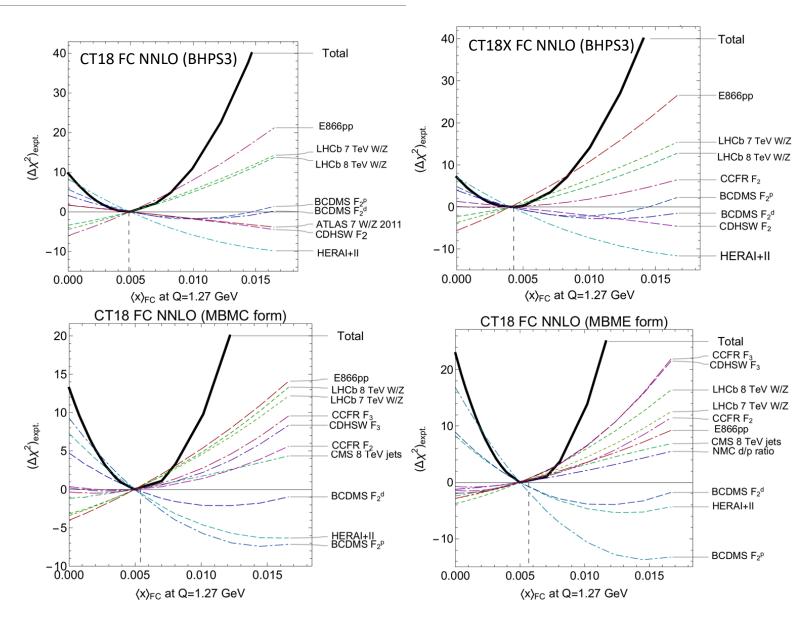
$$= 0.0041^{+0.0049}_{-0.0041} \left(\frac{+0.0091}{-0.0041} \right), \text{ CT18X (BHPS3)}$$

$$=0.0057^{+0.0048}_{-0.0045} \left(\frac{+0.0084}{-0.0057} \right), \text{ CT18 (MBMC)}$$

$$= 0.0061 {}^{+0.0030}_{-0.0038} \left({}^{+0.0064}_{-0.0061} \right), \text{ CT18 (MBME)}$$


$$\Delta \chi^2 \le 10$$

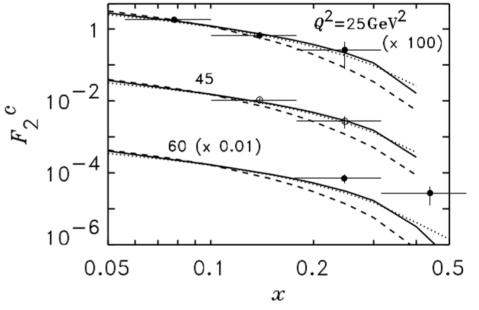
$$\Delta \chi^2 \le 30$$


(restrictive tolerance)

(~CT standard tolerance)

Nonperturbative charm moments $Q_0 = 1.27$ GeV Intervals of $\Delta \chi^2 < 10$

data pull opposingly on $\langle x \rangle_{\rm FC}$; depend on FC scenario, enhancing error



few expts with 'smoking gun' sensitivity to FC; but EMC data (?)

historically, charm structure function data, $F_2^{c\bar{c}}$, from EMC were suggestive

J. J. Aubert et al. (EMC), NPB213 (1983) 31-64.

- \rightarrow hint of high-x excess in select Q^2 bins
- → data were analyzed only at LO
- \rightarrow show anomalous Q^2 dependence
- → EMC data fit poorly in CT14 IC study

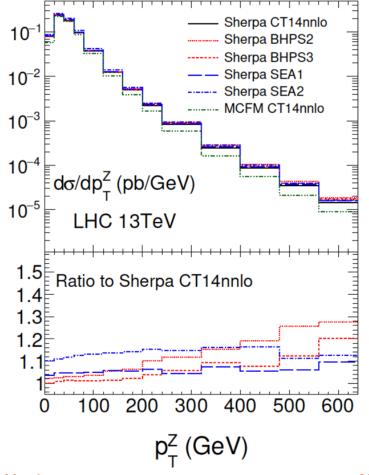
we do not include EMC in CT18 FC

CT14 IC, arXiv: 1707.00657.

Candidate NNLO PDF fits	$\chi^2/N_{ m pts}$					
	All Experiments	HERA inc. DIS	HERA $c\bar{c}$ SIDIS	EMC $c\bar{c}$ SIDIS		
CT14+EMC (weight=0), no IC	1.10	1.02	1.26	3.48		
CT14+EMC (weight=10), no IC	1.14	1.06	1.18	2.32		
CT14+EMC in BHPS model	1.11	1.02	1.25	2.94		
CT14+EMC in SEA model	1.12	1.02	1.28	3.46		

FC at LHC: *Z*+*c* suggested as sensitive probe

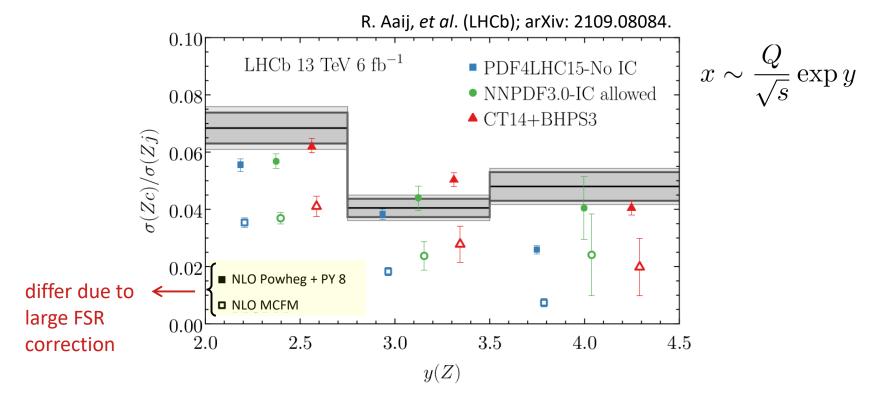
T. Boettcher, P. Ilten, M. Williams, 1512.06666; Bailas, Goncalves, 1512.06007


 p_{T} spectra, rapidity dists nominally sensitive to high-x charm PDF

 \rightarrow parton-shower effects can dampen high- p_T tails

Z+c NLO LHC 13 TeV

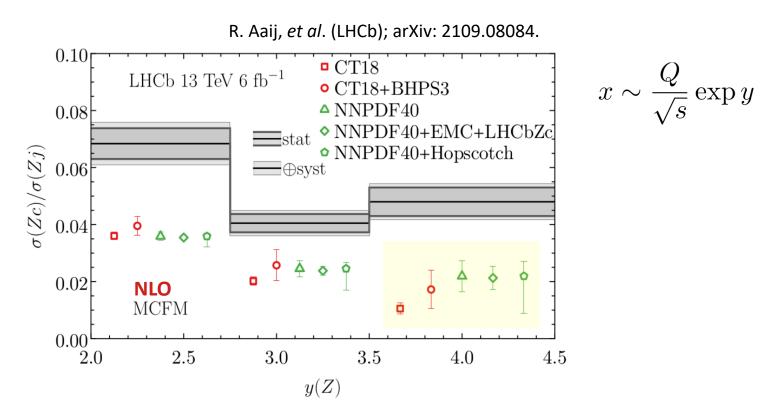
$d\sigma/dp_{\tau}^{Z}$ (pb/GeV) 10^{-1} 10^{-2} LHC 13TeV 10^{-3} CT14nnlo BHPS2 10^{-4} BHPS3 10^{-5} SEA1 ---- SEA2 CT14nnlo PDF unc. Ratio to CT14nnlo 100 300 500 600 200 400 p_{τ}^{Z} (GeV)


[Hou et al., arXiv:1707.00657]

Z+c theory predictions carry sizable uncertainties

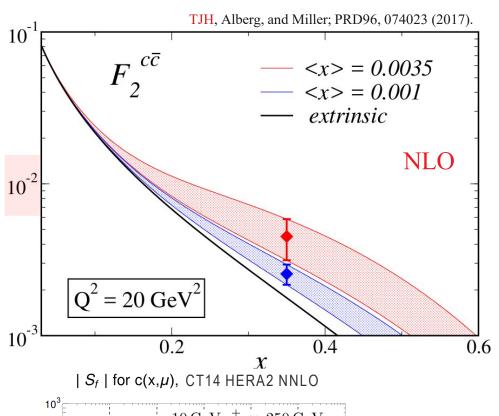
2022 LHCb 13 TeV data: (Z+c) / (Z+jet) ratios; 3 rapidity bins

→ calculated NLO cross-section ratio similarly depends on showering, hadronization


NNLO calculations recently available, but not implemented in PDF fits

R. Gauld, et al.; arXiv: 2005.03016. M. Czakon, et al.; arXiv: 2011.01011.

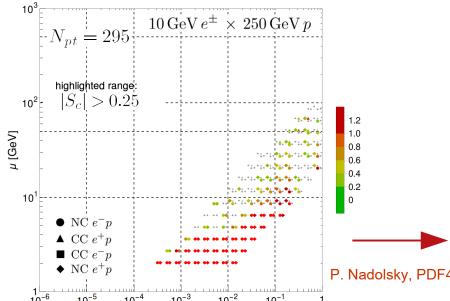
theory uncertainties currently larger than PDF variations


assuming MCFM at NLO, can vary underlying PDFs, test inclusion of FC

→ FC slightly enhances ratio; not enough to improve agreement with data

theory accuracy not yet sufficient to leverage expt. precision for PDFs

→ need NNLO theory interface; control over showering, final-state effects


future data will inform FC

EIC + lattice QCD will constrain FC scenarios

enhanced FC momentum implied by EMC data \rightarrow small high-x effects in structure function; need high precision

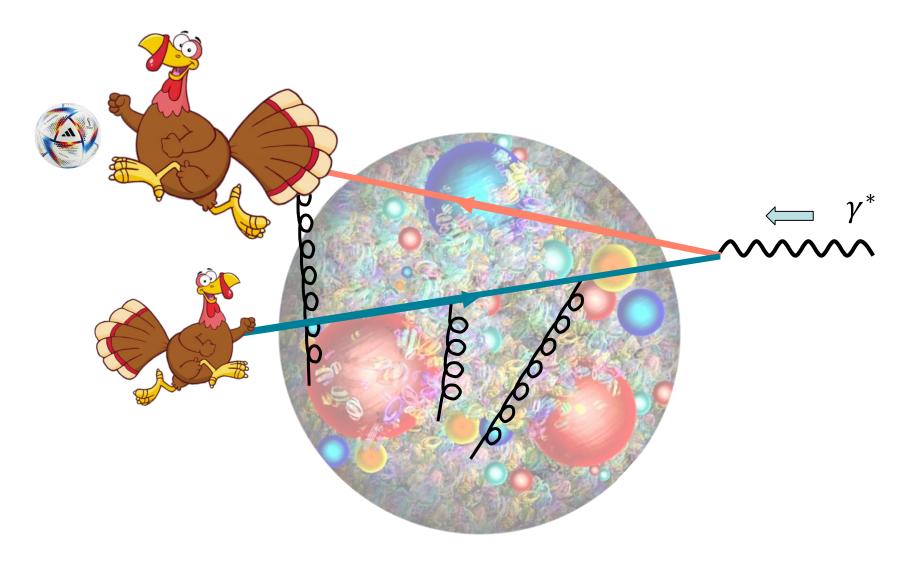
essential complementary input from LHC; CERN FPF

EIC will measure precisely in the few-GeV, high-x region where FC signals are to be expected

P. Nadolsky, PDF4LHC Meeting

CTEQ-TEA recent results

1. Finished


- ☑ CT18 LO: LO analysis for Monte Carlo event generators
- ☑ CT18 CS: Two-component sea (anti)quark PDFs with lattice inputs
- ☑ CT18 As: Strangeness asymmetry and PDFs with lattice inputs
- ☑ CT18 FC: NNLO constraints on fitted/intrinisic charm
- ☑ CT18 & SMEFT: Machine learning and SMEFT in CT18 framework
- The sampling paradigm to understand PDF tolerance ⇒ A. Courtoy's talk
- CT18qed: Including photon as a parton of the proton
- The NNLO CC DIS calculation in SACOT-MPS scheme
- Large-x PDFs
- Deuteron and nuclear corrections
- SeaQuest (E906) and STAR constraints on sea quarks

reported at other meetings

2. Ongoing:

- ✓ Impact of the LHC $t\bar{t}$ production
- Impact of the LHC Drell-Yan production
- PDFs at small x: Forward charm and bottom production; FPF

Happy Thanksgiving!

