Progress on characterising PDF uncertainties

PDF4LHC Meeting, CERN

Zahari Kassabov

November 23, 2022

DAMTP, University of Cambridge
Progress in LHC phenomenology requires much improved understanding of uncertainties

- Improved understanding of experimental uncertainties
 - Regularising experimental correlations in LHC data: theory and application to a global analysis of parton distributions (ZK, Nocera, Wilson, arxiv:2207.00690)

- Improved understanding of theory uncertainties
 - Parton distributions with scale uncertainties: a MonteCarlo sampling approach (ZK, Ubiali, Voisey, arxiv:2207.07616)
Covariance matrix regularization

arxiv:2207.00690 studies the problem of covariance matrix stability

\[\chi^2 = (\text{data} - \text{theory})(\text{inverse covariance matrix})(\text{data} - \text{theory}) \]

- If the covariance matrix is close to singular, then \(\chi^2 \) is unstable
 - Small inaccuracies in the matrix make \(\chi^2 \) appear much larger.
- Large correlations between systematics cause the matrix to be unstable
 - But correlation models usually difficult to determine, hence can be inaccurate

Derive a regularization procedure to make the covariance matrix stable.
Example: ATLAS dijets at 7 TeV

- Original $\chi^2 / N_{\text{dat}} = 2.14$
- Regularized $\chi^2 / N_{\text{dat}} = 1.10$
• Consider matrix of uncertainties $N_{\text{dat}} \times N_{\text{err}}$ such that the covariance is AA^t.

• Assuming the theory is known, fixed, and correct

$$d - t = An, \quad n \sim \mathcal{N}(0, I).$$

Then the expected value of the χ^2 is

$$\langle \chi^2 \rangle = \|A^+A\|_F^2 = N_{\text{dat}},$$

• If the χ^2 is measured with a different matrix \bar{A} then the expected value is instead

$$\langle \bar{\chi}^2 \rangle = \|\bar{A}^+A\|_F^2.$$
Standard deviation of χ^2 distribution is $\sqrt{2N_{\text{dat}}}$ hence we have stability if

$$\Delta \chi^2 = \| \bar{A}^+ A \|_F^2 - N_{\text{dat}} < \sqrt{2N_{\text{dat}}}$$

- No non trivial assumptions so far - Assumptions needed since we don’t know A.
A toy model with all the information

\[A(x) = \begin{pmatrix}
\varepsilon & 0 & 0 & 0 & 1 & 0 \\
0 & \varepsilon & 0 & 0 & 1 & 0 \\
0 & 0 & \varepsilon & 0 & 1 & 0 \\
0 & 0 & 0 & \varepsilon & 1 - x & \sqrt{1 - (1 - x)^2} \\
0 & 0 & 0 & 0 & \varepsilon & 1 - x \sqrt{1 - (1 - x)^2}
\end{pmatrix} \]

Assume \(\varepsilon \ll 1 \) and \(x \in [0, 1] \) unknown, sampled from

\[f_x(\xi) = 5(1 - \xi)^4 \]

- \(x = 0 \) is the most likely value. But it kills stability! - Measure with

\[\langle \Delta \chi^2 \rangle (x) = \int_0^1 \left\| \overline{A}^+(\xi) A(x) \right\|_F^2 - N f_x(\xi) d\xi \]
Why not pick the highest correlation?

\[\langle \Delta x^2 \rangle (x), \; \varepsilon = 0.1 \]

- \(x = 0 \) leads to an expected error of over 8 standard deviations.
- \(x = 0.04 \) reduces the error to 1 standard deviation.
Regularization

Assuming that

- All inaccuracies are in correlations $\bar{A} = D\bar{A}_{\text{corr}}$
- D: matrix of standard deviations
- Inaccuracies come from a small $\mathcal{O}(1)$ number of systematics

The stability of A can be measured by the condition number

$$Z = \|\bar{A}_{\text{corr}}\|_2^{-1} = \|\bar{A}_{\text{corr}}\|_2^{-1}$$

Closest matrix to $A = DU SV^t$ with $Z = \delta^{-1}$ for some acceptable δ

$$\bar{A}_{\text{reg}} = DU S_{\text{reg}} V^t$$

$$S_{\text{reg}(ii)} = \begin{cases} \delta & s_i < \delta \\ s_i & \text{otherwise} \end{cases}$$
Effect on global fit

Applying our preferred regularization to the full NNPDF dataset:

- Relative covariance differences smaller than 5%
- Correlation differences smaller than 0.05
- χ^2/N_{dat}: $1.16 \rightarrow 1.11$
- Almost no effect on best fit PDFs
What to do

Experimentalist (target audience)

- Measure stability of covmats
- Provide stable covmats
 - If sources of inaccuracy not known use the regularization procedure
 - If more information and resources available carry out detailed analysis (see Sect 3.2 of arxiv:2207.00690)

Fitters (fallback)

- Measure stability of covmats
- Seek stable versions of the covmat
 - If not available, regularize them
- Discuss regularized χ^2 only
What not to do

Correlation models (so far)

Advantages:
• Made by experimentalists using complete information

Disadvantages:
• Appear much later than the original data, causing versioning confusion
• Enormously laborious to analyse (feedback loop with experimentalists)
• Stability of the covariance matrices not guaranteed

Regularization procedure

Advantages
• Simple quick to apply formula
• Minimal modification of the covariance matrix
• Guaranteed stability
• Seems to yield similar results as correlation models

Disadvantages
• Grounded on assumptions and incomplete information
Theoretical uncertainties: MCscales

- arxiv:2207.07616 Studies the problem of matching PDF fits with scale variations
- Theory predictions require specifying factorisation and renormalisation scales:
 - Result depends on scale choice → scale uncertainty.
- Idea: assign different scale multipliers to each NNPDF replica.
- Record the information so scales can be matched between the PDF and the partonic cross section.
Fit quality allows assessing scale choices
Survival fraction

- Statistical interpretation of scale variations
- Assessment of ranges of variation
We record the scale multiplier choices for each fitted replica. This allows matching the partonic cross section with the scale choices within each replica

- Monte Carlo sample of \(N_{\text{rep}} \) MC\(\text{scales} \) prediction including correlated PDF and scale uncertainty

\[
\left\{ \sigma_k = \hat{\sigma}_p(k_f^{(k)}, k_{\tau_p}^{(k)}) \otimes f_k(k_f^{(k)}, k_{\tau_p}^{(k)}) \quad \forall \ k \in 1 \ldots N_{\text{rep}} \right\}
\]
Scales must be matched: Example Z cross section

Treating scales as uncorrelated between PDF and partonic cross section largely overestimates the uncertainties.
Why MCscales

- Correlation between scale variations in PDFs and partonic cross sections is large.
 - MCscales allows for exact matching
- Transparent specification of scale uncertainties, with tools allowing users to manipulate it.
- Largest benchmark of effect of scale variations of fit quality.
- NNLO implementation on NNPDF4.0 expected.