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● Unique e!p and e"p data set extending to 𝑥 = 1

● Data not used in any global pdf fit

● No higher twists which plague analysis of other 
high-𝑥 data

● Event numbers and differential cross-sections are 
given in 153 𝑥-𝑄# bins for each data set

● At high 𝑥 only integrated cross-sections are given 
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Measurement of neutral current e±p cross sections at high Bjorken x with the
ZEUS detector

ZEUS collab., Phys.Rev. D 89, 072007, hep-ex:1312.4438 (2014)

0.03 ≤ 𝑥 ≤ 1
650 ≤ 𝑄! ≤ 20000 GeV!

e"p and e#p

Use the full data set in a Bayesian pdf fit of bin-counts that can 
handle the Poisson statistics of low event numbers at very large 𝑥



Bayesian forward model approach
● Parameterise pdfs at some 𝑄/# and evolve at NNLO 

● Compute at NNLO 𝐹#, 𝐹0 and 𝑥𝐹1 and Born neutral current e±p cross-sections

● Integrate x-sections over bins in 𝑥-𝑄# and compute event numbers

● Apply radiative and detector effects to get predictions for the observed events 𝑛
● Compute Poisson likelihood 𝑃(𝑛|𝜃) for the set of fit parameters 𝜃
● Define prior probabilities 𝑃(𝜃) for the fit parameters

● Get posterior from Bayes theorem
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𝑃 𝜃 𝑛,model ∝ 𝑃 𝑛 𝜃 𝑃(𝜃)

Posterior is also conditional on the choice of parameterisation



● Bayesian approach is very attractive because …
- No Gaussian assumptions 

- Constraints are easily implemented (posterior cannot extend beyond prior range)

- Badly constrained parameters do not spoil the fit 

- Uncertainties in badly constrained parameters (as encoded in the prior) are automatically 
propagated to the posterior of other parameters

- Can easily judge information content of the data by comparing posterior to prior 

- Marginalisation of the posterior gives easy access to single-parameter distributions and correlations

● But also …
- Priors should be chosen with care to not introduce bias in the posterior

- Need lots of CPU to map-out the posterior in multi-dimensional parameter space
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For this analysis we use the Bayesian Analysis Toolkit and QCDNUM 



● High-performance toolkit for Bayesian inference
- Tools for definition of likelihoods, priors and posteriors

- Provides MCMC sampling techniques to explore the posterior

- Location and interval estimation, marginalisation, visualisation, etc.

- And much more …

● Written in Julia (with Julia interface to QCDNUM)

Bayesian Analysis Toolkit
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O. Schulz et al., SN computer 
Science 2, 210 (2021)

BAT.jl https://bat.github.io

Analysis https://github.com/cescalara/PartonDensity.jl



QCDNUM and SPLINT
● Use QCDNUM for NNLO evolution and structure functions

● SPLINT add-on provides cubic spline interpolation and integration
- Spline interpolation much faster than computing stfs and xsecs from scratch
- Needs some tuning of spline-grid to balance speed vs accuracy
- SPLINT provides fast integration over bins taking kinematic limit into account
- SPLINT integration is factor 300 faster than 2-dim Gauss  integration
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Timing (MacBook Pro 2018)

Cross-section spline with 100×25 nodes

Michiel Botje BAT meeting 31-08-2021 24

• Set step-x = 1 and step-q = 2

• : cut at 370 GeV

• Δ</< ≲ 5×10$% along the 
kinematic cut (= = 1)

"$ "% # [ms]
Evolution 100 50 3.6

6 Stf splines 22 7 2.9
100 50 4.5

Xsec spline 100 25 2.2
50 25 1.2

Timing (optimised code)

Δ%/%

Δ>/> at y = 1 and y = 0.7 

Δ𝜎/𝜎 ≲ 5×10!" along the kinematic cut
𝒏𝒙 𝒏𝒒 𝒕 [ms]

Evolution 100 50 3.6

6 Stf splines 22 7 2.9

Xsec spline 100 25 2.2

Integration 429 bins 0.8

www.nikhef.nl/~h24/qcdnumQCDNUM 



● Parameterise pdf as beta distribution

● Integrable for 𝜆 > −1

● Replacement 𝜆 → 𝜆 − 1 for valence pdf gives number density 

● Integrable for 𝜆 > 0 giving 

● Can fix valence 𝜆 for given 𝑁 and Δ through

● Easy to control low-𝑥 behaviour
- Integrable and decreasing towards low 𝑥 for 𝜆 > 0 (valence)
- Integrable and increasing towards low 𝑥 for −1 < 𝜆 < 0 (sea, gluon)
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Parameterisation



Parameterise 5 flavours at input scale 𝑄!" = 100 GeV2

● Gluon with a valence and sea component
● Fix 𝜆! and 𝜆" via the quark counting rules
● All 𝑥#𝑞 have the same shape but different normalisations
● Gluon sea component has same high-𝑥 power as the anti-quarks
● Do not fit normalisation constants but momentum fractions Δ which are more meaningful
● Momentum sum constraint 
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7 shape parameters + 9 momentum fractions with sum rule 
constraint contribute 15 degrees of freedom to the fit

Parameterise HERAPDF at 𝑄! = 100 GeV2 to 
check flexibility as shown here for 𝑢v and )𝑢

<latexit sha1_base64="ZKVN+W+wwy/e7sGJc3vo/fSF/wM="></latexit>
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xdv(x) = Ad x�d(1� x)Kd

xuv(x) = Au x�u(1� x)Ku

xq̄(x) = Ai x�q̄ (1� x)Kq̄ i = {d̄, ū, s̄, c̄, b̄}
xg(x) = Av

g x�v
g (1� x)Kg +As

g x�s
g (1� x)Kq̄



RT

Event predictions
● Evolve at NNLO with QCDNUM and compute neutral current  e±p cross-sections
● Integrate over 429 bins and  compute  vector of event predictions 𝜈
● Multiply by matrix 𝑅𝑇 to correct for radiative and detector effects: 𝑢 = 𝑅𝑇𝜈
● This gives the observed event predictions 𝑢 in 153 ZEUS bins for each data set
● For parameters 𝜃 the predictions 𝑢 𝜃 give for the likelihood of observing the events 𝑛 ∶
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ZEUS, Phys. Rev. D 101, 11209, hep-ex:2003.08732 (2020)
● Added to 𝑅𝑇 is the weighted 

sum of 10 systematic matrices
● The 10 weights 𝛿+ are left free 

parameters in the fit giving a 
total of 16+10=26 parameters

<latexit sha1_base64="LOnwmh4+pRF2MjeXvK5+sgg4f9E="></latexit>
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Priors
● Take 9-dimensional Dirichlet distribution for momentum prior 

- dir(�⃗�) with 9 shape parameters 𝛼 is multivariate extension of beta distribution
- Lives on an 8-dimensional manifold in the space Δ# ∈ 0,1 with ∑Δ# = 1

● Set Dirichlet shape parameters �⃗� according to asymptotic expectations
- Δ(gluon) ≈ Δ(quarks), Δ 𝑢v ≈ 2Δ 𝑑v , Δ 𝑠, 𝑐, 𝑏 ~ small
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● Pdf shape priors set to truncated 
Normal or Uniform such that the 
pdfs are integrable and have the 
required low-𝑥 behaviour

● Priors of systematic 𝛿 parameters 
set to truncated Normal with zero 
mean and unit width

M. Betancourt, Proc. AIP 
Conf., 1443, 157 (2012)
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PARAMETER EXTRACTION

Assuming that the counts in a bin i are Poisson dis-
tributed with a mean equal to the expected number ni

of events, we can compute the probability of observing
the actual data, given the values of the parameters. Us-
ing Bayes’ theorem we then calculate the joint posterior
probability density of the parameters, given the data,
with as input the prior probabilities of the parameters.
Single-parameter distributions or correlations among the
parameters are evaluated by integrating over the other
parameters. The posterior is not only conditional on the
data, but also on all the assumptions made in the analy-
sis, such as the choice of parametrizations.

Sound prior knowledge and known physical constraints
are easily implemented in the Bayesian approach, but pri-
ors should be chosen with care to not introduce unwanted
e↵ects in the posterior probability density. Comparing
the posterior and prior probability densities provides an
easy way to judge the information content of the data.

A 9-dimensional Dirichlet distribution [44] with 9
shape parameters ↵i was chosen for the prior of the mo-
mentum components �i. Note that a Dirichlet distribu-
tion Dir(↵) of k independent variables xi 2 [0, 1] lives on
a (k � 1)-dimensional manifold defined by

P
xi = 1.1

With a Dirichlet prior the sum rule (8) is thus auto-
matically satisfied. The choice of the parameters ↵i was
guided by the expectation that, asymptotically, gluons
and quarks should carry approximately the same momen-
tum, that valence up quarks should carry about twice the
momentum of valence down quarks, and that the heavier
quarks should carry little momentum.

TABLE I. Priors used in the parton density fit for all param-
eters. There are 9 parameters in the vector ↵ and 10 in �.
The normal distributions are truncated to the range indicated
and their mean and sigma are given in brackets.

Prior Range

↵ Dir(20, 10, 20, 20, 5, 2.5, 1.5, 1.5, 0.5) [0, 1]

Ku Normal(3.5, 0.5) [2, 5]

Kd Normal(3.5, 0.5) [2, 5]

�v
g Uniform [0, 1]

�s
g Uniform [�1,�0.1]

Kg Normal(4, 1.5) [2, 7]

�q̄ Uniform [�1,�0.1]

Kq̄ Normal(4, 1.5) [3, 10]

� Normal(0, 1) [�5, 5]

1 A Dirichlet distribution is a multivariate generalization of the
Beta distribution. For instance Beta(↵1,↵2) of one variable x is
the same as Dir(↵1,↵2) of two variables (x1, x2) with x1+x2 = 1.

The parameters ↵i of the Dirichlet distribution are
given in Table I, together with the prior distributions
of all other parameters. Also listed in the table are the
parameter ranges imposed. Note that the � ranges are
set such that all parton distributions are integrable and
either vanish, or increase at low x, as required.
The parameters Ku and Kd determine the behavior of

the valence quark distributions as x ! 1, and their val-
ues are of great interest. As given in Table I, we choose
as prior a truncated Normal distribution that accommo-
dates a range of about K = 3 to 4 at Q2 = 10 GeV2,
as found by di↵erent global fitting groups [12]. At our
Q2 we expect a somewhat larger value for K than at
10 GeV2. The Brodsky-Farrar counting rules predict that
Kq̄ ⇡ Kg + 1 ⇡ Ku,d + 2. Our priors are set to accomo-
date this expectation. Note that all our prior choices for
the K-parameters fulfill the requirement that the parton
densities, as well as their first derivatives, go to zero as
x ! 1 [12].
The extraction of the parameters of the parton dis-

tributions was performed using the Bayesian Analysis
Toolkit (BAT.jl) [45]. A Markov Chain Monte Carlo
technique was used to sample the posterior probability
distribution in the space of the parameters. The accuracy
of this data analysis setup was validated using simulated
data sets.
A comparison of the measured data to event numbers

predicted from the posterior probability distribution is
shown in Fig. 1. The predicted counts from the model
cover the observed counts well. We evaluated Pearson’s
�2 for the two data sets using the global mode param-
eters to evaluate the predicted number of counts, with
resulting values of �2

P = 321 from fitting the 306 event
numbers. Tests with simulated data yield a p-value of
0.27, indicating good agreement between the model and
the data.

RESULTS

As discussed in the introduction, the ZEUS high-x data
primarily set constrains on the valence distribution of the
up quark, and we focus on the relevant parameters here.
A summary of the full set of results is given in Table II.
We remind the reader that the parton densities are

defined in the MS scheme at NNLO and parameterized
at a scale of Q2

0 = 100 GeV2.
No significant reduction of the prior range was ob-

served in the posterior for the parameters �s̄,c̄,b̄, �v
g

and �s
g and 68 % probability upper limits 2�s̄ < 0.027,

2�c̄ < 0.038 and 2�b̄ < 0.007 are found. The prior
ranges of �v

g and �s
g are given in Table I.

Figure 2 shows a comparison of the prior and poste-
rior probability contours for Ku and �u as well as their
marginal distributions. As is clear in the figure, the
data strongly constrains these parameters. The momen-
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Results
● The real result of the analysis is the 26-dim posterior in parameter space 

● Parameter values and errors are defined in two ways as
- Position of  the mode of the posterior in parameter space 
- Mode of  the marginal parameter distribution with error corresponding to the smallest 

credible interval around the mode that contains 68% probability 
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● Here are the parameters 
that are reasonably well 
constrained by the data
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FIG. 1. Predictions of event numbers calculated from sampling the posterior probability distribution of the fitted parameters
(shaded bands) compared to the ZEUS data (filled dots) for e�p (left) and e+p scattering (right). AC: The predictions and

data are displayed at the center of the bins in which events are recorded. For clarity the boxes at large x are shown
enlarged in the insets.

tum fraction carried by the valence up quark distribution
was found to be �u ⇡ 0.22 with a credible interval of
{0.209–0.227} where, unless otherwise stated, we will in
the following always refer to the smallest intervals with
68% probability content. Such a high precision measure-
ment of �u has, to the best of our knowledge, not yet
been reported in the literature.

We obtained for the power of the up-valence (1 � x)
component a value of Ku ⇡ 3.78 with a credible interval
of {3.61–3.92}.

The summary of previously measured Ku values in [12]
includes results with stricter bounds than reported here.
However, these were determined from data at much lower
Q2 where higher-twist e↵ects may play a role, and which
do not extend to the highest values of x, as do the present

TABLE II. Parameter values obtained from this analysis. For
each parameter is given the value of the mode of the joint
posterior and of its marginal distribution, with errors corre-
sponding to the 68% smallest credible interval. The fit does
not constrain the values of �s̄,c̄,b̄, �

v
g and �s

g (see text).

Global Marginal Global Marginal

mode mode mode mode

�u 0.219 0.219+0.008
�0.010 Ku 3.76 3.78+0.14

�0.17

�d 0.099 0.088+0.028
�0.020 Kd 3.66 3.69+0.33

�0.60

�q̄ �0.55 �0.52+0.06
�0.11 Kq̄ 6.01 6.38+1.13

�1.40

Kg 4.92 5.22+0.91
�1.57

2�ū 0.126 0.104+0.022
�0.027 2�d̄ 0.031 0.024+0.020

�0.017

�v
g 0.265 0.239+0.043

�0.037 �s
g 0.245 0.241+0.047

�0.036

data. Furthermore in [16] it is shown that di↵erent high-x
parton distributions do not overlap within their quoted
uncertainties.

We follow the suggestion given in [12] and calculate

FIG. 2. Joint probability contours of the up-valence param-
eters Ku and �u (lower left) and the marginal distributions
of Ku (top) and �u (lower right). Shown are the 68 and 95%
smallest credible intervals for both the prior (light shaded)
and posterior (dark shaded) distributions.

2×105 samples ∼24h on MacBook Pro



Fitted event counts versus data
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● Compute event predictions from posterior mode parameters (bands) and 
compare to observed event counts (dots), plotted at the bin centers

● Pierson chi-squared gives 𝜒#/pt = 321/306 with a p-value of 0.27

Our parameterisation yields an excellent description of the data 

e!p e$p



Momentum fraction 
priors and posteriors 
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● The data very much constrain 
the momentum carried by the 
up-valence

● Weaker constraints on the 
down-valence, sea and gluon

● From global mode we find

uv dv sea gluon
0.22 0.10 0.17 0.51

<pr> 0.25

<po> 0.22

<pr> 0.49

<po> 0.50

<pr> 0.14

<po> 0.19

<pr> 0.12

<po> 0.09



Momentum Δ versus 1− 𝑥 power 𝐾

Very strong constraint on the up-valence parameters
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up-valence down-valence



Up and down valence distributions

● The insets show the effective 1-𝑥 power 𝛽 𝑥 = ⁄d ln 𝑥𝑓 d ln (1 − 𝑥)

● The 𝛽 slope of uv agrees well with a recent summary from Ball et al.
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R. Ball, E. Nocera and J. Rojo, Eur. Phys. J. C 76 (2016) , 383 , hep-ph:1604.00024



Compare to HERAPDF
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● Analytic parameterisations 
strongly couple regions of 
small and large 𝑥

● HERAPDF parameterisation 
is similar to ours but fitted 
at much lower 𝑥 (not using 
the ZEUS high-𝑥 data)

● This may explain at least 
part of the observed 
differences

H. Abramowicz et al., Eur. Phys. J. C 75, (2015)  12, 580



Summary
● The Bayesian analysis of ZEUS high-𝑥 data shows that these data carry a lot of information on 

the up-valence distribution
● Given our parameterisation we obtain accurate results on the momentum Δ carried by the up-

valence quark and its (1−𝑥) power 𝐾 (marginal mode and 68% credible interval)

Δ = 0.22!%.%'$%.%' 𝐾 = 3.8!%.($%.'
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What is next …

Bayesian pdf fitting is a viable, challenging, and highly interesting undertaking!

● Paper with detailed description of our analysis is in preparation

● Extend the analysis to investigate parameterisations with Bayesian model-selection techniques

● Exploit in the extended analysis the many opportunities for parallel computing


