# NEW FCC-HH RING LAYOUT: ARC AND INSERTION OPTICS

G. Pérez Segurana, M. Giovannozzi, T. Risselada



## Overview

- Longer arc cells 16-dipole configuration
- Dispersion suppressors
  - Experimental insertions
  - Technical insertions
- Insertion optics
  - Experimental insertions
  - Momentum collimation
  - Betatron collimation
    - Low beta
    - High beta
  - RF and beam 2 injection
    - Beam 1
    - Beam 2

Longer arc cells



The new layout has been used to optimise as much as possible the ring design

# Longer arc cells

- Increase dipole filling factor
- Although reduction in the number of dipoles w.r.t. CDR, ~4% increase compared to a 12-dipole configuration for the current placement
- Larger beam sizes can be compensated by a minor review of the beam screen geometry

|                    | CDR cell<br>12-dipole | New cell<br>16-dipole |
|--------------------|-----------------------|-----------------------|
| # dipoles          | 4668                  | 4464                  |
| Cell length (m)    | 213.030               | 275.792               |
| Circunference (km) | 97.75                 | 90.657                |



5

# Layout



# Dispersion suppressor – experimental insertion



- Displacing dipoles towards the IP moves the position of the IP outwards.
- Maintaining upstream dipole distribution makes FCC-ee and FCC-hh arcs overlap.
- Keep regular positioning of quadrupoles to ensure transverse focusing.
- Shortening of the straight section to keep circumference constant.





# Experimental straight sections







$$\beta^* = 10 m$$

### Aperture at injection



New superconducting separation/recombination dipoles à la HL-LHC

# Experimental straight sections







S [m]

 $\beta^* = 30 \ cm$ 

# Experimental straight sections

### Squeeze



FCC



# Dispersion suppressor – technical insertion



- Simpler than the experimental insertion.
- Space reserved too for collimators around Q8 and Q10.
- Possible to redistribute these drifts following results from collimation studies. R. Bruce

### Momentum collimation - PH

### **Optical functions**





### **Aperture at injection**



New doglegs, with a constant interbeam distance over the insertion

### Betatron collimation – PF





#### Low beta

### Aperture at injection



## Betatron collimation – PF

FCC



#### High beta

### Aperture at collision



# RF and Beam 2 injection – PL

### **Optical functions**





### Aperture at injection



# Beam 2 injection geometry



- 0.7T, 1T and 1.2 T septa with 8mm 12mm and 18mm blade thickness respectively.
- 40m kicker, ~0.086 mrad kick
- Hardware parameters to be homogenized in with PB (dump and beam 1 injection)
  W. Bartmann

# Beam 2 injection

FCC





### **TDI**

- Larger  $\sqrt{\beta_x\beta_y}$  at TDI reduces material stress. Maintained  $\sqrt{\beta_x\beta_y} \sim 185 \mathrm{m}$  from CDR
- Ideal placement 90° downstream from MKI

Values from: FCC-hh protection absorbers and the dump - FCC Week 2018



# Conclusions and next steps

- Adapted FCC-hh lattice following the outcome of placement studies.
- Increased filling factor by moving to a 16-dipole cell configuration.

#### Next

- Incorporate lattice for PB to obtain a complete lattice of the ring.
- Study tunability of PL optics.
- Global optimization of magnet family definitions.
- Study of corrector systems.
- Resume **DA** tools and simulations.



# Thank you for your attention.