

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

MDI OVERVIEW

Manuela Boscolo (INFN-LNF)

for the MDI group

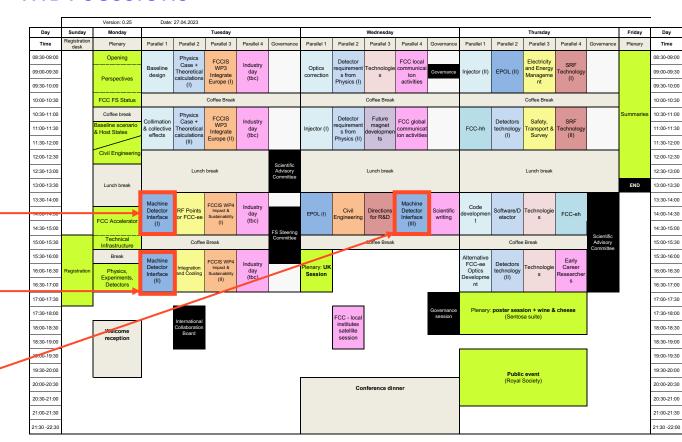
FCC WEEK 2023 London, 5-9 June 2023

Outline

- Introduction to the IR MDI
- Highlights on the progress on some of the main key topics of the MDI design with perspectives toward the demonstration of MDI feasibility
- Summary

FCC WEEK 2023 – MDI sessions

https://indico.cern.ch/event/1202105/


3 sessions

Tue. 6 + Wed. 7 90 min. each

Mechanical model, vertex integration, vibration studies

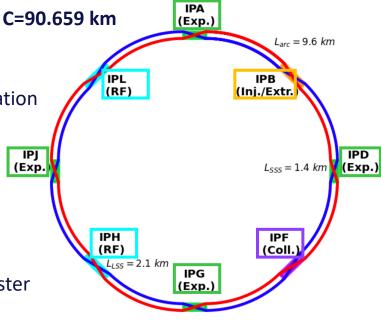
Backgrounds, losses, SR, beamstrahlung

IR magnets, IR BPMs, alignment

Agenda

FCC

MDI (I) Convener: John Seeman (SLAC)				
M. Boscolo (INFN)	MDI overview			
F. Palla (INFN)	Mechanical integration of the IDEA detector in the IR			
A. Ing (Un. Zurich)	IDEA VXD implementation in full simulation			
F.Fransesini(INFN)	Mechanical model of the MDI			
L. Brunetti (CNRS)	Towards mechanics and optics evaluation of the vibration effects for the MDI			
MDI (II) Convener: Manuela Boscolo (INFN-LNF)				
MDI (II)	Convener: Manuela Boscolo (INFN-LNF)			
MDI (II) H. Nakayama (KEK)	Convener: Manuela Boscolo (INFN-LNF) SuperKEKB MDI lessons			
H. Nakayama (KEK) G. Broggi	SuperKEKB MDI lessons			
H. Nakayama (KEK) G. Broggi (CERN&Sap.&INFN)	SuperKEKB MDI lessons Beam Losses in the MDI			

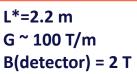

MDI (III)	Convener: Kathleen Amm (BNL)
Brett Parker (BNL)	SC IR magnets system
Carl J Eriksson (CERN)	Magnet design for beamstrahlung photons extraction line
Arnaud Foussat (CERN)	Preliminary design study of interaction region crab sextupole for FCC-ee collider
Leonard Watrelot (CNAM)	Alignment systems propositions to face the FCC-ee MDI challenges
Manfred Wendt (CERN)	Challenges for the IR BPMs

FCC-ee collider

- Double ring e+ e- collider
- Asymmetric IR layout and optics to limit synchrotron radiation towards the detector
- Crab-waist collision optics
- Large Piwinski angle $\phi = \frac{\sigma_z}{\sigma_x} \frac{\theta}{2}$
- Synchrotron radiation power 50 MW/beam at all beam energies
- Top-up injection scheme for high luminosity requires booster synchrotron in collider tunnel
- "Tapering" of magnets along the ring to compensate the sawtooth effect

8 surface sites
A-D-G-J Experiments
B Injection/Extraction
F Collimation section

H-L RF sections



FCC-ee Interaction Region rationale

Crab-waist scheme, based on two ingredients:

- concept of **nano-beam scheme:** vertical squeeze of the beam at IP and large horizontal crossing angle, large ratio σ_z/σ_x reducing the instantanous overlap area, allowing for a lower β_v *
- crab-waist sextupoles
- This scheme, with the goal luminosity of 10³⁶cm⁻²s⁻¹ at 45.6 GeV sets constraints to the IR design, among which:
 - L* (free distance between IP and first quad)
 - the strength of the final focus doublet
 - the solenoid detector field

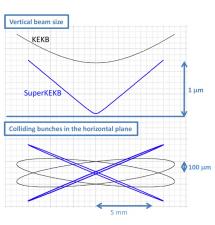


Figure 2: Schematic view of the nanobeam collision scheme.

SuperKEKB <u>https://arxiv.org/pdf/1809.01958.pdf</u> DAFNE, PRL 104, 174801 (2010)

- Compact IR with the first final focus quadrupole (FFQ) QC1 and two anti-solenoids inside the detector.
- No common magnet between the two beams.
- The two beam pipes split at ~1 m.

High-level Requirements for the IR and MDI region

One common IR for all energies, flexible design from 45.6 to 182.5 GeV with a constant detector field of
 2 T

At Z pole: Luminosity ~ 10³⁶ cm⁻²s⁻¹ requires crab-waist scheme, nano-beams & large crossing angle.

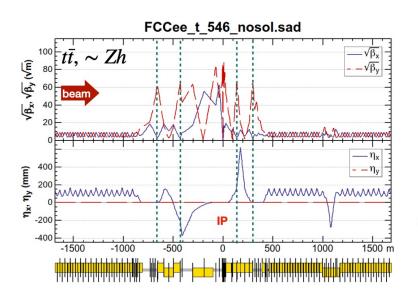
Top-up injection required with few percent of current drop.

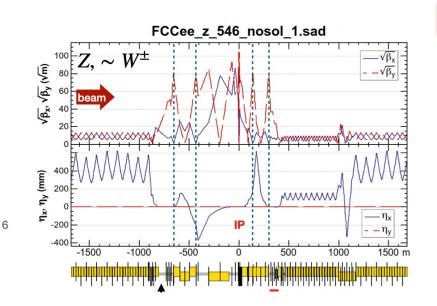
Bunch length is increased by 2.5 times due to beamstrahlung

At **ttbar threshold**: synchrotron radiation, and beamstrahlung dominant effect for the lifetime

- Solenoid compensation scheme
 - Two anti-solenoids inside the detector are needed to compensate the detector field
- Cone angle of 100 mrad cone between accelerator/detector seems tight, trade-off probably needed Addressed with the implementation of the final focus quads & cryostat design, (e.g. operating conditions of the cryostat, thermal shielding thickness, etc.)
- Luminosity monitor @Z: absolute measurement to 10⁻⁴ with low angle Bhabhas

 Acceptance of the lumical, low material budget for the central vacuum chamber alignment and stabilization constraints
- Critical energy below 100 keV of the Synchrotron Radiation produced by the last bending magnets
 upstream the IR at tt_{bar}
 - Constraint to the FF optics, asymmetrical bendings

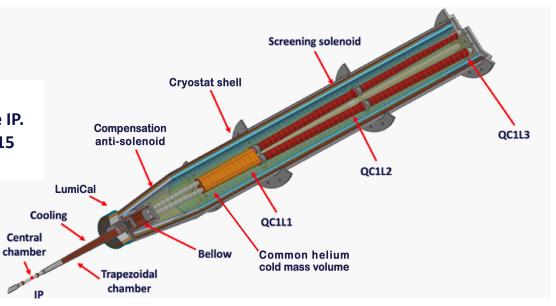

Since the last FCC WEEK 2022


- New placement and layout → optics with smaller circumference and 4IPs
- Progress on the mechanical model
 - engineered up to the IR magnets, beam pipe with cooling system, and its support
 - vertex detector designed, integrated in MDI, its software description implemented
 - integration of the lumical
 - assembly concept
- Progress on the backgrounds simulations:
 - beam losses in the MDI: halo collimation scheme and first loss maps in the MDI
 - **synchrotron radiation** in the MDI: SR collimators and masking, constraints to the top-up injection
 - Detector backgrounds simulations with refined and more realistic software model
- Progress on the heat load from wakefields, SR, and beam losses
- Beamstrahlung Photon dump:
 - optimal location at 500 m from IP, study on the magnet aperture yoke to allow an extraction line
 - radiation studies with Fluka started
- And also: IR magnets, IR BPMs, feedback
- Alternative solenoid compensation -with large impact on the MDI- has been proposed and pros&cons under evaluation

IR optics

K. Oide

- The **beam optics** are highly asymmetric between upstream/downstream due to crossing angle & suppression of the SR below 100 keV from about 400 m upstream to the IP.
- Crab waist/vertical chromaticity correction sextupoles are located at the dashed lines, they are superconducting.



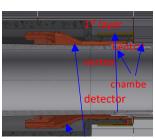
FCC-ee Interaction Region

L* is 2.2 m.

The 10 mm central radius is for ± 9 cm from the IP. The two symmetric beam pipes with radius of 15 mm are merged at 1.2 m from the IP.

Half-length of the detector about 5 m End face QC1L3 8.4 m.

P. Raimondi proposed an alternative / evolved solenoid compensation scheme (à la DAFNE) It would largely simplify the present IR magnet system. Prons and cons under study. Excellent coupling correction seems possible.

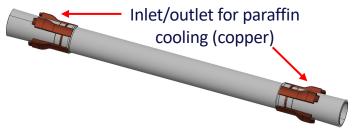


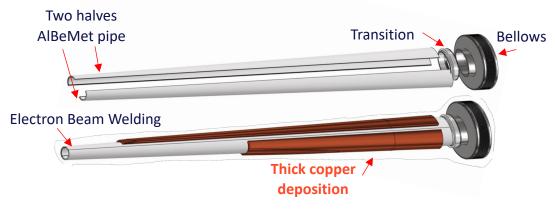
Progress IR mechanical design

- The **central chamber** geometry was studied to integrate the central chamber with the **vertex detector**.
- The support tube has been designed to :
 - Provide a cantilevered support for the pipe
 - Avoid loads on thin-walled central chamber during assembly or due to its own weight
 - Support LumiCal
 - Support the outer and disk tracker

- Two different type of bellows have been proposed.
- The assembly procedure is in progress and the rail solution ha been proposed.

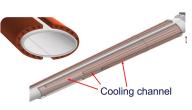
Inlet/outlet




warm and cooled

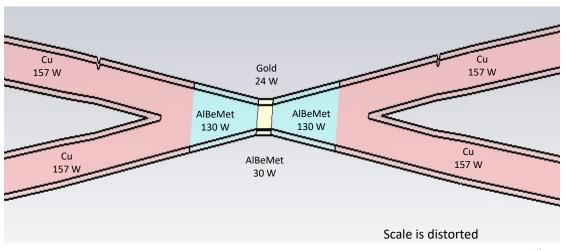
prototyping and mockup planned

Inner radius 10 mm
Outer radius 11.7 mm


FCC

Starting from 90 mm to 1190 mm from IP
The cooling channels are **asymmetric** due to the **LumiCal acceptance requirements**.

Material	thickness
AlBeMet162 (62% Be and 38% Al alloy)	0.35 mm
Paraffin (coolant)	1 mm
AlBeMet162	0.35 mm
Au	5 μm


To reduce the cooling material, the design provides **five channels** for each side; in this way is possible to use the needed quantity of coolant and reduce the material, creating a light structure.

FCC

Impedance-related heat load distribution

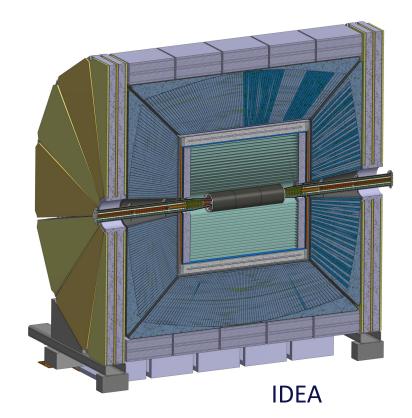
B: Steady-State Thermal Figure				
Type: Temperature				
Unit: °C				
Time: 1 s				
09/07/2022 12:47				
47,591 Max				
44,303				
41,015				
37,727				
34,439				
31,152				
27,864				2
24,576				Z .
21,288				\
18 Min				T.
	0,000	0,200	0,400 (m)	**

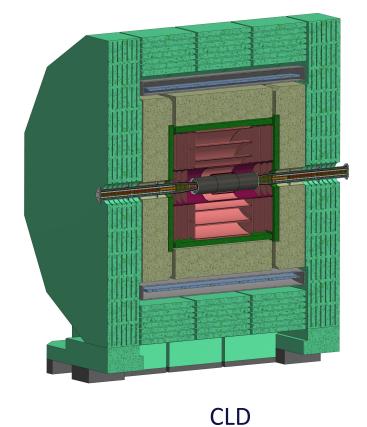
parameter	value
beam energy [GeV]	45
beam current [mA]	1280
number bunches/beam	1000
rms bunch length with SR / BS [mm]	4.38 / 14.5
bunch spacing [ns]	32

CST wakefields evaluations

Estimate heat load

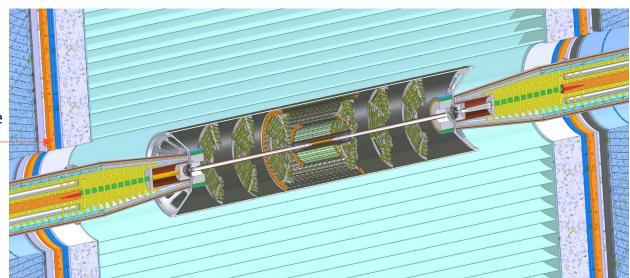
A. Novokhatski, SLAC


Fed into ANSYS to dimension the cooling system


	trapezoidal chamber	central chamber
T_{max}	48°C	33°C
т	20.5 °C	20 °C
$T_{coolant}$	(paraffin)	(water)

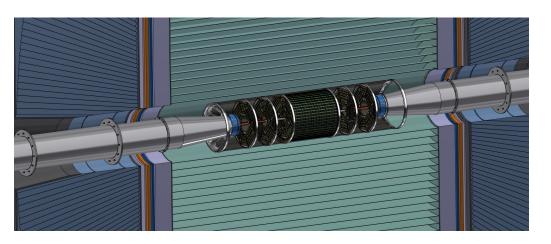
FCC

Interaction Region in two detectors

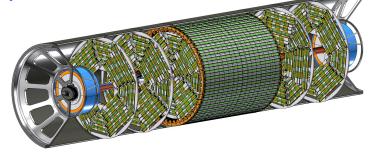


Central Support tube with endcaps

- All elements in the interaction region -beam pipe, vertex, tracker disks, LumiCal- are mounted rigidly on a support cylinder that guarantees mechanical stability and alignment.
- The support tube is a carbon-fiber lightweight rigid structure.
- This study has been performed for the IDEA detector.
- We are starting a similar study also for CLD.


Integration of the support tube with the detector

- Anchoring points with the detector is under study → we are investigating the anchorage to the calorimeter
- Required space for vertex and tracker detector services is under study



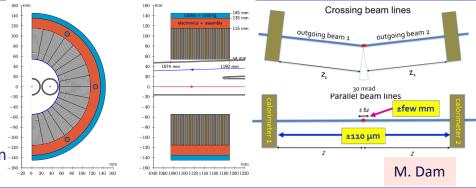
Vertex integration with accelerator components

Vertex (MAPS) with 3 inner layers supported by the conical chamber and mounted with the beam pipe and LumiCal to the support tube

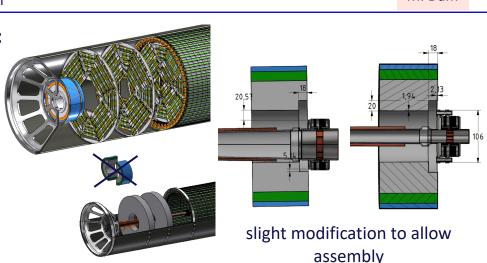
Vertex outer layers and 6 disks (MAPS) mounted directly on the support tube.

Imported full CAD designs in Key4HEP

Study of the services and cooling ongoing


mockup planned for the support tube and detector components

LumiCal Integration


Goal: absolute luminosity measurement 10⁻⁴ at the Z Standard process Bhabha scattering

- Bhabha cross section 12 nb at Z-pole with acceptance
 62-88 mrad wrt the outgoing pipe
- The LumiCals are centered on the outgoing beamlines with their faces perpendicular to the beamlines
 - Requirements for alignment few hundred µm in radial direction few mm in longitudinal direction

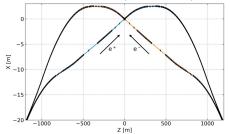
Study on the integration of the lumical performed:

- Asymmetrical cooling system in conical pipe to provide angular acceptance to lumical
- Support tube includes the lumical (structural analysis with realistic weights performed)
- We avoid the splitting of the lumical in two halves for the assembly
- Engineering of the lumical required

Synchrotron Radiation backgrounds

- Simulation of the synchrotron radiation (SR) starts from 1.2 km upstream the IP, simulation code: BDSIM (GEANT4)
- We evaluate the SR produced
 - by the last dipoles and quadrupoles upstream the IR -> can be a background source
 - by the IR quads and solenoids -> collinear with the beam and will hit the beam pipe
 at the first dipole after the IP.

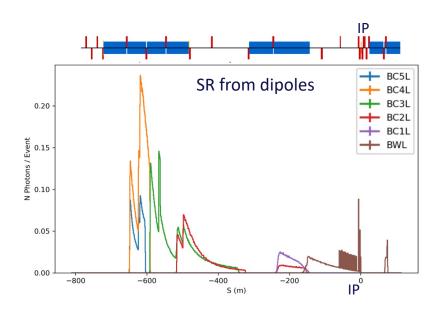
- Gaussian core beam (98% of the beam)
- Non-Gaussian beam tails to 10 σ_x and 50 σ_y (2%)



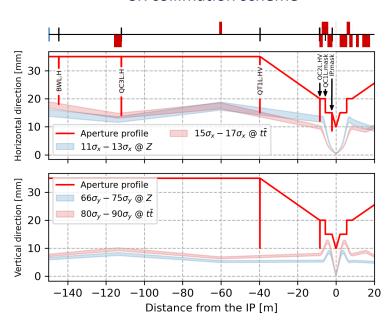
- SR collimators (W, movable) and masks (W, 2 cm long) implemented
- SR power deposition on the IR evaluated, acceptable values

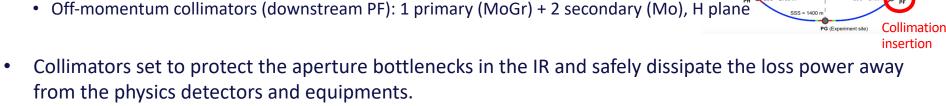
Photon tracks are being tracked with key4hep to evaluate beam induced detector backgrounds in the detectors

A. Ciarma


- Study of the **impact of SR** in the IR with **off-axis top-up injection ->** constraints to the injection scheme
- Study of the **impact of SR** in the IR for the **alternative HFD** lattice (dedicated talk on Thursday, alternat. optics session)
- Also other simulation codes are used, e.g. SYNC_BKG, SYNRAD+, MDISim, all in good agreement.
 Each has slightly different features and adds additional and useful informations.

FCC




- Radiation from last bend reaches the IP
- SR photons from solenoid do not hit near the IP
- SR from FF quadrupoles leads to losses near the IP when beam tails are considered

SR collimation scheme

FCC-ee Collimation system & Beam losses in the IR

- New Xtrack-BDSIM simulation framework
 combines particle tracking and particle-matter interactions in the collimators
- Collimation scheme for beam halo losses with a workflow similar to LHC
 - Betatron collimators (upstream PF): 1 primary (MoGr) + 2 secondary (Mo), H+V planes
 - betation commutors (upstream PF). I primary (wood) + 2 secondary (wo), H+V planes

- Also the SC IR magnet system need to be protected from loss power, to avoid the risk of quenches.
- The collimator system need to be robust and do not have to produce backgrounds.
- IR beam loss maps found for various beam loss scenarios.

Primary losses are being tracked with key4hep to evaluate beam induced detector backgrounds in the detectors

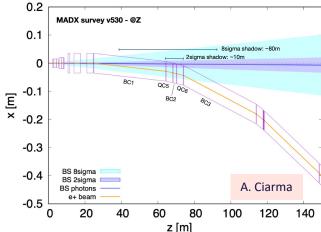
• Beam power loss evaluated for +/- 100 m from the IP → safe values found

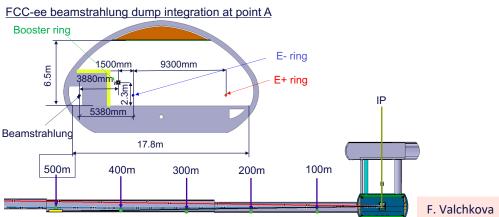
A. Ciarma

A.Abramov et al, Studies of layout and cleaning performance for the FCC-ee collimation system, IPAC23 MOPA128.pdf

G. Broggi et al., Beam Dynamics Studies for the FCC-ee Collimation System Design, MOPA129, IPAC23

A. Ciarma et al., Machine Induced Backgrounds in the FCC-ee MDI region and Beamstrahlung Radiation, eeFACT22, Frascati (2022)


Beamstrahlung Photon Dump


Radiation from the colliding beams is very intense 370 kW at Z

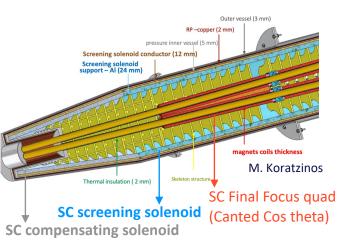
Synchrotron Radiation from the fringe solenoid and anti-solenoid is ~ 77 kW

	Total Power [kW]	Mean Energy [MeV]
Z	370	1.7
ww	236	7.2
ZH	147 22.9	
Тор	77	62.3

This BS radiation exits the vacuum chamber around the first bending magnet BC1 downstream the IP

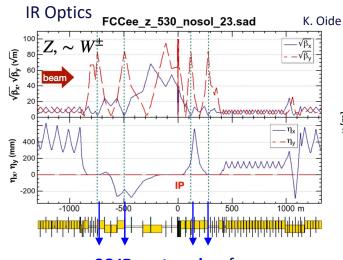
High-power beam dump needed to dispose of these BS photons + all the radiation from IP

- liquid lead target as dump absorber material is under investigation
- Shielding needed for equipment and personnel protection for radiation environment

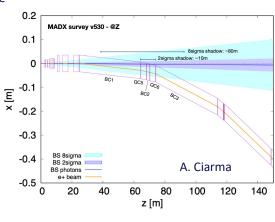


IR Magnets

IR goes +/- 1.2 km around the IP



B. Parker


- Canted Cost theta FF quad
- Compensating and screening solenoid
- Corrector windings

A. Foussat

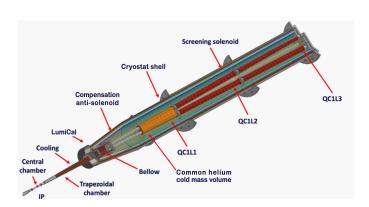
SC IR sextupoles for crab-waist and chromaticity correction

Carl J Eriksson

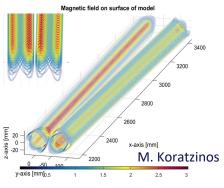
large yoke aperture radius

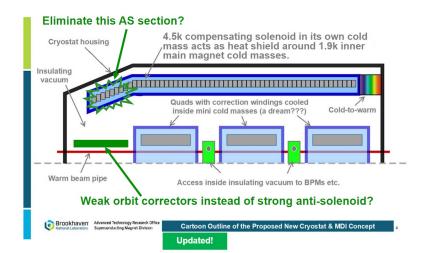
required for the (normal conducting) magnets after the IP to handle the beamstrahlung radiation

MDI- IR Magnet system


SC magnets inside the detector

BNL -and potentially other US labs- are interested to collaborate with CERN on the SC IR magnet system design


Integration of complete cryostat with magnets, correctors, and diagnostics is required.


IR magnet system development flow:

- Functional specification
- Preliminary design
- Detailed design and manufacture
 - → final design layouts

Summary

- Significant progress on all key aspects of the MDI design:
 - Mechanical model, including vertex and lumical integration, and assembly concept
 - Backgrounds, halo beam collimators, IR beam losses
 - Synchrotron radiation, SR collimators and masking, impact on top-up injection
 - Heat Loads from wakefields, synchrotron radiation, and beam losses
 - Beamstrahlung photon bump with first radiation levels
- IR magnets, ongoing work to progress on a complete design of magnets, cryostat, correctors, and diagnostics
- Alternative solenoid compensation under evaluation, even if not for the midterm review

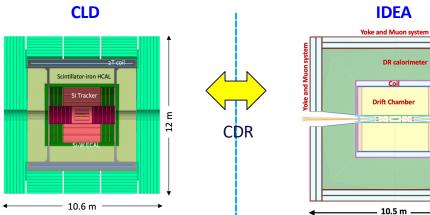
FCC

Backup

Parameters

FCC-ee collider parameters as of June 3, 2023	3.
---	----

Beam energy	[GeV]	45.6	80	120	182.5
Layout		PA31-3.0			
# of IPs		4			
Circumference	[km]	90.658816			
Bend. radius of arc dipole	[km]	9.936			
Energy loss / turn	[GeV]	0.0394	0.374	1.89	10.42
SR power / beam	[MW]		5	0	
Beam current	[mA]	1270	137	26.7	4.9
Colliding bunches / beam		15880	1780	440	60
Colliding bunch population	$[10^{11}]$	1.51	1.45	1.15	1.55
Hor. emittance at collision ε_x	[nm]	0.71	2.17	0.71	1.59
Ver. emittance at collision ε_y	[pm]	1.4	2.2	1.4	1.6
Lattice ver. emittance $\varepsilon_{y,\text{lattice}}$	[pm]	0.75	1.25	0.85	0.9
Arc cell		Long	90/90	90,	/90
Momentum compaction α_p	$[10^{-6}]$	28	3.6	7.	.4
Arc sext families		7	5	14	16
$eta_{x/y}^*$	[mm]	110 / 0.7	220 / 1	240 / 1	1000 / 1.6
Transverse tunes $Q_{x/y}$		218.158 / 222.200	218.186 / 222.220	398.192 / 398.358	398.148 / 398.182
Chromaticities $Q'_{x/y}$		0 / +5	0 / +2	0 / 0	0 / 0
Energy spread (SR/BS) σ_{δ}	[%]	0.039 / 0.089	0.070 / 0.109	0.104 / 0.143	0.160 / 0.192
Bunch length (SR/BS) σ_z	[mm]	5.60 / 12.7	3.47 / 5.41	3.40 / 4.70	1.81 / 2.17
RF voltage 400/800 MHz	[GV]	0.079 / 0	1.00 / 0	2.08 / 0	2.1 / 9.38
Harm. number for 400 MHz		121200			
RF frequency (400 MHz)	MHz		400.7	86684	
Synchrotron tune Q_s		0.0288	0.081	0.032	0.091
Long. damping time	[turns]	1158	219	64	18.3
RF acceptance	[%]	1.05	1.15	1.8	2.9
Energy acceptance (DA)	[%]	±1.0	± 1.0	± 1.6	-2.8/+2.5
Beam crossing angle at IP $\pm \theta_x$	[mrad]	± 15			
Piwinski angle $(\theta_x \sigma_{z,BS})/\sigma_x^*$		21.7	3.7	5.4	0.82
Crab waist ratio	[%]	70	55	50	40
Beam-beam ξ_x/ξ_y^a		0.0023 / 0.096	0.013 / 0.128	0.010 / 0.088	0.073 / 0.134
Lifetime $(q + BS + lattice)$	[sec]	15000	4000	6000	6000
Lifetime $(lum)^b$	[sec]	1340	970	840	730
Luminosity / IP	$[10^{34}/{\rm cm}^2{\rm s}]$	140	20	5.0	1.25
Luminosity / IP (CDR, 2 IP)	$[10^{34}/{\rm cm}^2{\rm s}]$	230	28	8.5	1.8



- Parameters such as tunes, β^* , crab waist ratio are chosen to maximize the luminosity keeping the lifetime longer than 4000 sec without machine errors.
- The choice of the parameters including the sextupole settings still has a room for further optimization.
- Including injection/extraction/ collimation optics will need additional optimization.

new

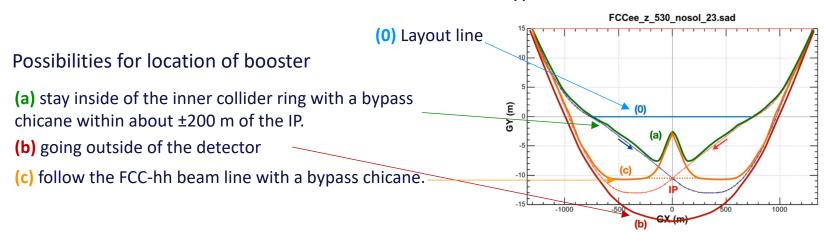
FCC-ee Detector Concepts

- Full Silicon vertex detector + tracker;
- Very high granularity, CALICE-like calorimetry;
- Muon system
- Large coil outside calorimeter system;
- Possible optimization for
 - Improved momentum and energy resolutions
 - PID capabilities

- Ultra light drift chamber w. powerfull PID;
- Monolitic dual readout calorimeter;
- Muon system;
- Compact, light coil inside calorimeter;
- Possibly augmented by crystal ECAL in front of coil;

Noble Liquid ECAL based

- High granularity Noble Liquid ECAL as core;
 - PB+LAr (or denser W+LCr)
- Drift chamber (or Si) tracking;
- CALICE-like HCAL;
- Muon system;
- Coil inside same cryostat as LAr, possibly outside ECAL.



Layout in the Interaction Region

Both IPs of FCC-ee and FCC-hh now completely overlap.

- The IP transversely deviates from the layout line by about 10.5 m outward.
 Beams always enter the IP from inside of the ring.
- The placement of the booster has not been perfectly determined yet.

The booster must be at least 8 m from the IP, to bypass the detector

The choice depends on the size of the tunnel, synchrotron radiation toward the detector

MDI alignment and monitoring

- Tight alignment requirements on IR magnets, Lumical, and BPMs especially
- Cryostats surround the FF quads, the BPMs.
- External / internal (to the cryostat) alignment and monitoring system
- Progress in the deformation monitoring system design with optical fibers placed in a helix shape. Two technologies are available:
 - SOFO (Surveillance d'Ouvrage par Fibre Optique)
 - In-line multiplexed and distributed FSI measurement (in development at CERN)

https://iopscience.iop.org/article/10.1088/1361-6501/acc6e3