Challenges for the IR BPMs

E. Howling & M. Wendt (CERN)

Beam Position Monitors for the Interaction Region (IR BPMs)

courtesy Manuela Boscolo

Request: Need BPMs near

- o the LumiCal
 - in the common vacuum chamber!
- the segmentedSC-FF-quad(s) QC1
 - Located in separated vacuum chambers
 - How many? Between each QC1 segment?

A few Remarks to FCC-ee BPMs

- Large scale beam instrumentation system
 - ~2000 BPMs per MR, ~7000 BPMs total for 2xMR+booster (LHC: ~1100 BPMs total)
 - Only distributed beam diagnostics system with synchronous bunch-by-bunch and turn-byturn measurement capability
 - Every BPM measures the center of charge bunch position (optional: bunch intensity, bunch timing)
- Requirements / conditions alike 4th generation light sources
 - \circ (sub-) μm resolution, (relative) accuracy, alignment, (long-term) stability, etc.
 - Signal source for the fast orbit feedback system (low noise, low latency!)
 - Low beam-coupling impedance, high signal transfer impedance
 - Which is a contradiction in itself...
 - \circ High synchrotron radiation levels, no space (even in a ${f 90}~km$ ring!), low costs
 - ON TOP: large beam pipe aperture! Where can we locate the BPM read-out electronics?!
- IR BPMs are a part of the FCC-ee BPM system!
 - But may also play additional roles, e.g., luminosity optimization, IP luminosity feedback,
 BS-dump interlock, Van-der-Meer scans, etc.

Remember: BPMs are based on Symmetry!

LumiCal BPM: Where should it go?! What is THIS?! A nice cavity? asymmetry on purpose? $-1140 \ mm$??? $-1120 \ mm$ -1175 mm

LumiCal BPM Pickup: A Proposal

- Requires optimization, RF & impedance studies, etc.
- Needs real-estate!
 - \sim \sim 15 mm length for the buttons, more space in radial directions
 - \circ Also, space for the as-short-as-possible(!) 50 Ω semi-rigid SiO₂ RF signal cables
 - If located at $\sim \pm 1150 \ mm \ \Rightarrow \ \sim 7.67 \ ns \ e^+ e^-$ bunch signal separation

What about BPMs near QC1LR1?

 Neither for the BPM pickups, nor for the signal cables!

Proposal for BPM pickups near QC1LR1

- Separate chambers with circular cross-section (20 mm diameter)
 - Again: Please no tapering of the beam pipe near the BPM pickup!
 - BPM pickups with four skewed buttons (6 mm diameter)
 - Staggered by 12.5 mm to accommodate the signal cables

Signal transfer impedance:

$$Z_{button}(\omega) = \frac{V_{button}(\omega)}{I_{beam}(\omega)} = \frac{\phi}{R_{load}} \frac{\omega_1}{\omega_2} \frac{j\omega/\omega_1}{1 + \omega/\omega_1}$$

 \circ Button size d_{button} and coverage factor ϕ

$$\phi = \frac{\int J_{wall} \ dA_{elec}}{\int J_{wall} \ dA_{BPM}} \cong \frac{A_{elec}}{A_{BPM}} = \frac{d_{button}}{4 \ D_{pipe}}$$

Lessons from LHC Button BPMs (1)

Lessons from LHC Button BPMs (2)

From LHC BPMs to FCC-ee IR BPMs

- The LHC RF button UHV feedthroughs and SiO₂ signal cables are reliable in general, but:
 - Vacuum leaks during warm-up / cool-down periods appear more frequent
 - N-type connector does not always provide a reliable RF signal signal connection
 - Despite a locking wire
 - Typically, 5-of-1000 BPMs in the LHC cryostats have issues
- For the FCC-ee IR BPMs
 - The reliability of the IR BPM pickups and signal cables is utmost important!
 - No access for repairs / maintenance once the IR regions and experiment are fully assembled!
 - Consider a connector-less, fixed RF link between the button electrode and the SiO₂ coaxial signal cable

Question: Bunch length dependence?!

Yes, the BPM button electrode signals depend on the bunch length

BUT: The normalized beam position measurement is bunch length independent!

More relevant is the required bunch-to-bunch

0.6

dynamic range!

Summary

- Please, don't forget the Beam Instrumentation!
 - \circ 90 km ring, and no space for beam instruments?!
 - You may need beam instruments to observe, characterize and improve machine and beam quality...
- IR BPMs need to be reliable!!!
 - After final assembly, no access for maintenance or mods!
 - Avoid cable connectors between button electrodes and cables
 - All IR BPM hardware needs to be radiation hard!
- Need for IR layout compromises
 - Requires will and several iterations
 in the mechanical integration of the BPMs in the IR