Challenges for the IR BPMs

E. Howling & M. Wendt (CERN)
Beam Position Monitors for the Interaction Region (IR BPMs)

- **Request:**
 - Need BPMs near the LumiCal
 - in the common vacuum chamber!
 - the segmented SC-FF-quad(s) QC1
 - Located in separated vacuum chambers
 - How many?
 - Between each QC1 segment?

3D view of IR

Assembly updated with the last design of the chamber and the last version of the components

courtesy Manuela Boscolo
IR Layout imported to CST Studio

- Thanks to M. Boscolo and F. Fransesini for the STEP drawing file
 - Right side of the IR shown
 - There seems to be a x-y coordinate flip?!

IP (0 mm)

LumiCal BPM
(\sim - 1150 \text{ mm})

QC1LR1 BPM
(\sim - 2180 \text{ mm})

QC1LR1-2 BPM
(\sim - 2930 \text{ mm})

QC1LR2-3 BPM
(\sim - 4260 \text{ mm})
A few Remarks to FCC-ee BPMs

• Large scale beam instrumentation system
 o ~2000 BPMs per MR, ~7000 BPMs total for 2xMR+booster (LHC: ~1100 BPMs total)
 o Only distributed beam diagnostics system with synchronous bunch-by-bunch and turn-by-turn measurement capability
 ▪ Every BPM measures the center of charge bunch position (optional: bunch intensity, bunch timing)

• Requirements / conditions alike 4th generation light sources
 o (sub-)\(\mu\)m resolution, (relative) accuracy, alignment, (long-term) stability, etc.
 o Signal source for the fast orbit feedback system (low noise, low latency!)
 o Low beam-coupling impedance, high signal transfer impedance
 ▪ Which is a contradiction in itself...
 o High synchrotron radiation levels, no space (even in a 90 km ring!), low costs
 o ON TOP: large beam pipe aperture! Where can we locate the BPM read-out electronics?!

• IR BPMs are a part of the FCC-ee BPM system!
 o But may also play additional roles, e.g., luminosity optimization, IP luminosity feedback, BS-dump interlock, Van-der-Meer scans, etc.

see also BI talk of Thibaut
Remember: BPMs are based on Symmetry!

- Measures the bunched-beam displacement, i.e., the transverse beam position asymmetry with a perfectly symmetric apparatus
 - Any small asymmetry in the BPM system causes an offset!
 - Tolerances, misalignments in the BPM pickup mechanics, signal cables, read-out electronics
 - Aging effects causes a BPM offset drift
- The relative accuracy is maintained by mapping (correcting) the non-linear position characteristic of the BPM pickup
- The resolution is given by
 - The BPM pickup transfer impedance (sensitivity)
 - The signal-to-noise ratio (SNR) of the BPM read-out system
 - The measurement (integration) time
LumiCal BPM: Where should it go?!

What is THIS?!
A nice cavity?

-1120 mm asymmetry on purpose? -1140 mm

-1175 mm

LumiCal BPM Pickup: A Proposal

- **Straight (non-tapered!) elliptical chamber, 57 × 28 mm ID**
 - At least ±50 mm longitudinal
- **BPM with four skewed buttons, ~10 mm diameter**
 - Integrated shape memory alloy (SMA) button assembly (no flange-mount UHV feedthroughs)
 - Requires optimization, RF & impedance studies, etc.
- **Needs real-estate!**
 - ~15 mm length for the buttons, more space in radial directions
 - Also, space for the as-short-as-possible(!) 50 Ω semi-rigid SiO₂ RF signal cables
 - If located at ~ ± 1150 mm ⇒ ~7.67 ns e⁺-e⁻ bunch signal separation
What about BPMs near QC1LR1?

• Again: No space for BPMs foreseen
 ○ *Neither for the BPM pickups, nor for the signal cables!*
Proposal for BPM pickups near QC1LR1

- Separate chambers with circular cross-section (20 mm diameter)
 - Again: Please no tapering of the beam pipe near the BPM pickup!
 - BPM pickups with four skewed buttons (6 mm diameter)
 - Staggered by 12.5 mm to accommodate the signal cables

- Signal transfer impedance:
 \[Z_{\text{button}}(\omega) = \frac{V_{\text{button}}(\omega)}{I_{\text{beam}}(\omega)} = \phi R_{\text{load}} \frac{\omega_1}{\omega_2} \frac{j\omega/\omega_1}{1 + \omega/\omega_1} \]

- Button size \(d_{\text{button}} \) and coverage factor \(\phi \)
 \[\phi = \frac{\int J_{\text{wall}} \, dA_{\text{elec}}}{\int J_{\text{wall}} \, dA_{\text{BPM}}} \approx \frac{A_{\text{elec}}}{A_{\text{BPM}}} = \frac{d_{\text{button}}}{4 \, D_{\text{pipe}}} \]
Lessons from LHC Button BPMs (1)
Lessons from LHC Button BPMs (2)
From LHC BPMs to FCC-ee IR BPMs

- The LHC RF button UHV feedthroughs and SiO$_2$ signal cables are reliable in general, but:
 - Vacuum leaks during warm-up / cool-down periods appear more frequent
 - N-type connector does not always provide a reliable RF signal connection
 - Despite a locking wire
 - Typically, 5-of-1000 BPMs in the LHC cryostats have issues

- For the FCC-ee IR BPMs
 - The reliability of the IR BPM pickups and signal cables is utmost important!
 - No access for repairs / maintenance once the IR regions and experiment are fully assembled!
 - Consider a connector-less, fixed RF link between the button electrode and the SiO$_2$ coaxial signal cable
Question: Bunch length dependence?!

- Yes, the BPM button electrode signals depend on the bunch length
 - **BUT:** The normalized beam position measurement is bunch length independent!
- More relevant is the required bunch-to-bunch dynamic range!
Summary

• Please, don’t forget the Beam Instrumentation!
 o 90 km ring, and no space for beam instruments?!
 o You may need beam instruments
to observe, characterize and improve machine and beam quality...

• IR BPMs need to be reliable!!!
 o After final assembly, no access for maintenance or mods!
 o Avoid cable connectors between button electrodes and cables
 o All IR BPM hardware needs to be radiation hard!

• Need for IR layout compromises
 o Requires will and several iterations
 in the mechanical integration of the BPMs in the IR