

POWERING OF RF SYSTEMS

POWER CONVERTERS AND INFRASTRUCTURE

D. Aguglia, M. Colmenero Moratalla, S. Pittet, F. Blanquez, F. Boattini

CERN

Electrical Power Converter (EPC) Group, Accelerator Systems (SY Dept.)

FCC Week 5-9 June 2023 London, UK

Outline

FCC-ee RF powering stages (focus on collider)

Powering requirements and solutions

Integration

Conclusion

RF stages - Z

Specs for each stage

Machine	7	7
	Collid.	Boost.
RF frequency - type	400-kly	800-kly
# of cavities	112	24
# of klystrons	112	12
# of S.S. modules	_	-
Kly. RF power (nom.) [kW]	901	2 x 210
Klystron power [MW]	1	0.5
RF power/SS module [kW]		
El. power/kly [MW]	1.33	0.671
El. power/SS module [kW]		
Waveguides efficiency [%]	95	95
Elect. To RF efficiency [%]	80	80
RF overheads [%]	11	19
Tot. installed [MW]	149	7.91
Tot. el consumption [MW]	134	0.038*

Filament heater of 10 kW considered

- For collider: both beam lines considered
- Difference between RF nominal power and klystron power defined as "overhead" for RF regulation margin purposes
- Electrical power / klystron includes:

- Installed power: to produce peak power, overhead included related to CAPEX
- Electrical consumption considers average/nominal regime with no overheads → related to OPEX

RF stages - W

Specs for each stage

Machine		7	W		
Iviaciiiic	Collid. Boost.		Collid.	Boost.	
DE fraguese es a frage					
RF frequency - type	400-kly	800-kly	400-kly	800-kly	
# of cavities	112	24	264	56	
# of klystrons	112	12	132	14	
# of S.S. modules	-	-	-	-	
Kly. RF power (nom.) [kW]	901	2 x 210	2 x 378	4 x 89	
Klystron power [MW]	1	0.5	1	0.5	
RF power/SS module [kW]					
El. power/kly [MW]	1.33	0.671	1.33	0.671	
El. power/SS module [kW]					
Waveguides efficiency [%]	95	95	95	95	
Elect. To RF efficiency [%]	80	80	80	80	
RF overheads [%]	11	19	32	40	
Tot. installed [MW]	149	7.91	175	9.4	
Tot. el consumption [MW]	134	0.038*	133	0.38*	

- Changes in the RF infrastructure
 BUT
- Slight change in electrical power infrastructure
 more overheads installing more power

The 175 MW of installed infrastructure should be done at the Z stage already – very difficult to upgrade from 149 to 175 MW...

^{*} Calculated considering preliminary booster cycles in CDR

RF stages - H

Specs for each stage

Machine	Ζ		W			Н
	Collid.	Boost.	Collid.	Boost.	Collid.	Boost.
RF frequency - type	400-kly	800-kly	400-kly	800-kly	400-kly	800-SS
# of cavities	112	24	264	56	264	108
# of klystrons	112	12	132	14	132	-
# of S.S. modules	-	-	-	-	-	108
Kly. RF power (nom.) [kW]	901	2 x 210	2 x 378	4 x 89	2 x 382	-
Klystron power [MW]	1	0.5	1	0.5	1	-
RF power/SS module [kW]						47
El. power/kly [MW]	1.33	0.671	1.33	0.671	1.33	-
El. power/SS module [kW]						96
Waveguides efficiency [%]	95	95	95	95	95	95
Elect. To RF efficiency [%]	80	80	80	80	80	65
RF overheads [%]	11	19	32	40	31	28
Tot. installed [MW]	149	7.91	175	9.4	175	10.4
Tot. el consumption [MW]	134	0.038*	133	0.38*	134	1.35*

- No changes for power converters from W to H for collider
- Booster from klystrons to solid state amplifiers

^{*} Calculated considering preliminary booster cycles in CDR

RF stages - ttbar

Specs for each stage

Machine	Ζ		W		Н		ttbar		
	Collid.	Boost.	Collid.	Boost.	Collid.	Boost.	Collid.	Collid.	Boost.
RF frequency - type	400-kly	800-kly	400-kly	800-kly	400-kly	800-SS	400-SS	800-kly	800-SS
# of cavities	112	24	264	56	264	108	264	488	600
# of klystrons	112	12	132	14	132	-	-	244	-
# of S.S. modules	-	-	-	-	-	108	264	-	150
Kly. RF power (nom.) [kW]	901	2 x 210	2 x 378	4 x 89	2 x 382	-	-	2 x 163	-
Klystron power [MW]	1	0.5	1	0.5	1	-	-	0.5	-
RF power/SS module [kW]						47	78	-	32
El. power/kly [MW]	1.33	0.671	1.33	0.671	1.33	-	-	0.671	-
El. power/SS module [kW]						96	162	-	92
Waveguides efficiency [%]	95	95	95	95	95	95	95	95	95
Elect. To RF efficiency [%]	80	80	80	80	80	65	65	80	65
RF overheads [%]	11	19	32	40	31	28	28	54	78
Tot. installed [MW]	149	7.91	175	9.4	175	10.4	42.8	164	13.84
Tot. el consumption [MW]	134	0.038*	133	0.38*	134	1.35*	33.4	104	2.8*

- Big change from H to ttbar mixture of klystrons and solid state amp. in collider
 Big power overheads

^{*} Calculated considering preliminary booster cycles in CDR

RF stages

Integration aspects & power overheads

- Integration sequencing
- RF power overheads implications
 - power overheads needed for RF regulation purposes
 - Power converter rated at max V & I (dimensioning or installed power)
 - For ttbar converter power overhead 60 %
 - → A reduction of this overheads could allow the reuse of many power components see last slide before conclusion

RF stages

Solid-state amplifiers powering

ttbar machine

132x 400 MHz solid-states 78 kW (RF) 122 x 800 MHz klystrons 500 kW (RF)

122 x 800 MHz klystrons 500 kW (RF) solid-states 78 kW (RF)

132x 400 MHz

- LV needed in the tunnel as SS typically supplied via 400V/50Hz
- Potential issue in collider form H to ttbar → need to supply 43 MW in the klystron gallery @ LV
- 400 V level need to be produced locally (~1 V/m) → big transformers needed at the level of gallery or end of straight section alcoves

Using classical 50 Hz transformer very limiting

Example

- 2 MVA transformer (18 kV/400 V)
- Dimensions: 2,5 m x 1,6 m x 3,1 m (height)
- Mass: 6,13 Tons

We would need 22 of them underground...

...possible alternative solution presented later on in this presentation...

Powering requirements & solutions

Powering needs of a klystron

- High efficiency klystrons under R&D
- Preliminary specs
 - Efficiency 80%
 - 2 x voltages supply: -72 kV & -60 kV (polarizing)
 - → max current / klystron: 14 A for 1 MW
 - Filament heater: 10 kW
- Protection
 - Each klystron needs a protection scheme limiting energy deposit during internal arcs (crowbar/disconnector)
- Each klystron need some voltage regulation range (few %
 - TBD) to fine tune their power at max efficiency

Powering requirements & solutions

Two extreme powering concepts

One power converter per klystron

Power converters installed in klystron gallery

Centralised power converter for all klystrons

Power converter installed on surface

Powering requirements & solutions

Proposed solution - centralised MMC on surface

- Modular Multilevel Converter (MMC)
- Industrially available now in the 100s of kV & GW range
- Advantages
- High efficiency: 98 % 99 %,
 High availability (redundant modules)
 Special protection techniques needed

AC Network

RF powering integration

Proposed solution - centralised MMC on surface

- Needed surface of $50 \text{ m} \times 30 \text{ m} = 1500 \text{ m}^2$
- A converter hall/building
- An auxiliary building (e.g. controls)
- Several outdoor equipment:
 - Input transformers
 - Circuit breakers
 - Reactors
 - Cooling
 - Measurements
 - Etc.

Illustration of a draft integration of a ~200 MW MMC

RF powering integration

Proposed solution - centralised MMC - underground equipment

- Equipment in HV bunker (klystron gallery):
 - Capacitor bank
 - Voltage regulator (series connected)
 - Fast disconnector (klystron protection)
 - Decoupling reactor (due to parallel powering of all klystrons)
 - Filament heater power converter
 - Control rack
 - Separator tank (one bunker supplies several klystrons)

Working with RF group to derive a total volume/surface needed in HV bunkers

Dimensions: 2,5 m x 1,6 m x 3,1 m (height)

RF powering integration

Proposal for the Solid-State LV powering

 Re-use MMC modules to create Medium Voltage (MV) / Medium Frequency (MF) Have smaller size MF transformers underground

Kectifier

Directly provide LV DC voltage to SS amplifiers

Advantages

- Reuse of power component from H machine
- Reduced transformer volume underground
- Improve overall SS efficiency via centralised AC/DC conversion (modular & redundant)

Solid State

amplifiers

Inconvenient

Slightly more complex

Klystrons

RF stages

Remember

this slide?

LV needed in the tunnel as SS typically supplied via 400V/50Hz

Potential issue in collider form H to ttbar → need to supply 43 MW in the klystron gallery @ LV

400 V level need to be produced locally (~1 V/m) → big transformers needed at the level of

Conclusion

- Most probable solution: centralized power converter to supply all klystrons
- Power converter installed on the surface, need for ~1500 m²
- Voltage regulators and protection in underground HV bunkers (volume TBD with RF)
- Large RF power overheads for now, need to optimize it to minimize powering CAPEX
- Solid State amp. in collider for ttbar needs a powerful (43 MW) LV distribution
 - ➤ Investigating solutions to minimize impact on CAPEX (civil engineering) via smaller Medium Frequency transformers to be placed underground

Thank you for your attention.

Machine		Z	W		Н		ttbar		
	Collid.	Boost.	Collid.	Boost.	Collid.	Boost.	Collid.	Collid.	Boost.
RF frequency - type	400-kly	800-kly	400-kly	800-kly	400-kly	800-SS	400-SS	800-kly	800-SS
# of cavities	112	24	264	56	264	108	264	488	600
# of klystrons	112	12	132	14	132	-	-	244	-
# of S.S. modules	-	-	-	-	-	108	264	-	150
Kly. RF power (nom.) [kW]	901	2 x 210	2 x 378	4 x 89	2 x 382	-	-	2 x 163	-
Klystron power [MW]	1	0.5	1	0.5	1	-	-	0.5	-
RF power/SS module [kW]						47	78	-	32
El. power/kly [MW]	1.33	0.671	1.33	0.671	1.33	-	-	0.671	-
El. power/SS module [kW]						96	162	-	92
Waveguides efficiency [%]	95	95	95	95	95	95	95	95	95
Elect. To RF efficiency [%]	80	80	80	80	80	65	65	80	65
RF overheads [%]	11	19	32	40	31	28	28	54	78
Tot. installed [MW]	149	7.91	175	9.4	175	10.4	42.8	164	13.84
Tot. el consumption [MW]	134	0.038*	133	0.38*	134	1.35*	33.4	104	2.8*