

DC NETWORKS FOR THE POWERING OF THE FCC

M. Colmenero, F. Blanquez, D.Aguglia, S. Pittet, B. Wicki

CERN

Electrical Power Converter (EPC) Group, Accelerator Systems (SY Dept.)

FCC Week
5-9 June 2023
London, UK

Table of Contents

- Why DC?
- A Trend Towards DC
- Limitations of DC Networks
- Supply of the RF Systems
- High Voltage Transmission Network
- DC Microgrids for the Future Circular Collider
- Conclusions

"Break-even"

Point

DC Power

Distance

Why DC?

- ▶ No reactive power
 - → Lower constraints upon distance
 - → Transmission capacity increase
- Avoid high frequency effects (skin and proximity)

- ► Direct integration of DC sources
- → Reduce converter stages
- → Reduce system footprint
- ► Challenges
- → Low reliability of power converters
- → Difficult protection
- → No DC standards

DC networks could help to further optimize the FCC electrical network

) FCC 08/06/2023 / FCC Week 2

A Trend Towards DC

Bulk Power Transmission

INELFE: HVDC Interconnection between France and Spain

Data Centers and Computer Infrastructure

Renewable Energy Integration

MVDC networks for PV/Wind energy farms

[1] H.Wang, Y.Zhou and others: Topology and Control Strategy of PV MVDC Grid-Connected Converter with LVRT Capability

- ▶ DC applications are a reality, however...
- There are still many technological challenges
- A pure DC-based network is nowadays not economically feasible

A Trend Towards DC: Technological Drivers

Modular Multilevel Converters converter (MMC)

High-Frequency Conversion technology (SST)

- Voltage Source Converters: Easy paralleling
- Very modular = high reliability
- ► High efficiency: >98%
- → MMC >> Thyristor-Based Converters
- → Cost MMC >> Cost Thyristor Converters

- Substitutes of transformers in DC networks
- ➤ 50 Hz magnetics replaced by high frequency components: **reduction in footprint**
- → Cost SST >> Conventional Transformers
- → Efficiency SST << Conventional Transformers</p>
- → Footprint SST << Conventional Transformers</p>

Limitations of DC Networks

FCC

- ► Voltage conversions are difficult in DC, especially **High Voltage to Low Voltage**
- ► All power is managed by power converters: **lower reliability**
- ► Sensitivity to faults is higher in DC: complex protection, costly DC breakers
- Two possible uses of DC network:

DC Microgrids

Supply of the RF Systems

FCC

HVDC Voltage Level LVDC

Supply of a Common DC Distribution Busbar using Parallel-Connected MMCs

- MMC converters have been modified to cope with RF DC voltage requirements
 - → DC Control range from 0 to 72 kV or 60 to 72 kV
 - → Multi-port MMCs for three terminal DC supply
 - Single bus connection is a concern regarding RF operation: studies on fault ride-through have been performed

HV Transmission Network

► RF HVDC Powering
Infrastructure could be used to
transmit power in along the
FCC ring

FCC

HVDC Voltage Level LVDC

▶ RF Supplied by Thyristor Rectifiers (Poor Power Quality but lower cost)

- MMCs used as Active Filters and HVDC Rectifier (lower footprint than Static Var Compensators (SVCs)
 - ► Lower cost of HV cables (two instead of three)
 - Lower transmission losses (no reactive power)
 - Better controllability (V-control, voltage glitches)

More Advantageous for FCC-hh

DC Microgrids for the FCC

HVDC Voltage Level

- ► AC/DC conversion stages can be centralized: single AC/DC Converter
- Reduction of the number of AC/DC conversion stages:
- → Higher efficiency
- → Lower footprint

FCC

- → Reduced complexity
- ► There are, however, several challenges:
- → Ensure Reliability
- → Grounding
- → Protection

► Same principle is applicable to other systems (i.e. experiments)

DC Microgrids for the FCC

HVDC Voltage Level

▶ Optimization of the volume of the power converter alcoves

Conventional AC Solution

DC Solution

- ► AC/DC Converters centralized at the surface/technical galleries
- Solid State Transformers (SSTs) for Voltage Conversion
- ► Losses Transformer + Several LV AC/DC are higher than SST + HV AC/DC
- SST are very modular: easier transport, maintenance and scalability
- ➤ Comparative analysis with the AC baseline is difficult due to lack of expertise

Conclusions

FCC

"...There are still many challenges to be solved regarding reliability and cost..."

Extensive R&D is still required to fully exploit the potential of DC networks

"... DC networks add an extra degree of freedom for the optimization of the FCC infrastructure..."

- ► DC networks will be part of the global optimization tool
- ► Several systems susceptible to being converted to DC have been identified for the FCC
- "...What is missing nowadays?..."
- ► Collaborate with other groups on the possibility of building their systems in DC (Computing, experiments...)

Thank you for your attention.