Preliminary magnetic design of IR Crab Sextupole for FCC-ee Collider

A FOUSSAT, CERN TE/MSC - FCC Week 2023 on behalf of the FCC MDI team.

London, UK, 5 - 9th June 2023
https://indico.cern.ch/event/1202105/
Outline

- Context
- FCC-ee crab sextupoles requirements
- Optimisation of cos-theta sector coils
- Case 1: LTS Nb$_3$Sn case study
- Case 2: HTS ReBCO design
 - 3D magnetic model of sextupole saddle coils
 - Economical aspects
 - Cryogenics, mechanical structure considerations
- Development flow
- Summary
In FCC-\(e^+e^\text{-}\) collider, Crab-Waist collision with extremely low beta at IP generates very large chromatic effects. This requires crucial strong and thin SY crab sextupole pair, per beam line, per side (8 per IP, 32 units) for chromaticity geometric correction, to achieve crab-waist and to preserve dynamic aperture.

- See Optics overview [1] K. Oide, FCCIS 2022 Workshop

Diagram Description

- **SY2L** - 745.30 m ← CRAB
- **SY1L** - 497.82 m
 - IP 0 m
- **SY1R** +118.06 m
- **SY2R** +276.00 m ← CRAB

Crab waist/vertical chromaticity correction sextupoles are located at the vertical dashed lines.
Requirements

- [R1 - Optics] The current optics at \sqrt{s} (182.5 GeV) requires IR sextupole magnetic bore field of 4.1 T at 35 mm radius. This goes up to 4.72 T for energy scan scenario to 182.5 GeV asking for S of 3850 T.m$^{-2}$ over 350 mm
 - Sensitivity analysis for tt and Z shows acceptable +28% length increase on magnetic length L_m: 350 mm [K. Oide].
- [R2 – Cooling] The crab correcting sextupoles location at 250 m and 700 m from the interaction region, makes Liquid helium distribution impractical, and conduction-cooled sextupole magnet design at 10-20 K is an attractive solution.
- [R3- Beam pipe] Warm beam pipe with 60 mm diameter at crab sextupoles location
- [R4- Duty cycle] Ramp up time of 1 min to operating field for Z/W scenarios
- [R5 - Field quality] normal harmonics $b_n/B_3 < 5$ units @ $R_{\text{ref}}=23$ mm, $b_9 < 50$ units (tentative, under progress). “No need of SY rotatable feature like on SuperKEK crab sextupole for a_3 correction as no X-Y chromatic coupling is expected” (communication K.Oide).
- [R6 – Radiation loss] SR heat load sources and beam envelop incl. masking to be confirmed at SY1 and SY2 locations
Convention

In a storage ring, the chromatic correction performed by crab sextupole at nonzero dispersion location is quantified by normalized strength in units of m\(^{-3}\) or the magnetic design Strength \(S_s\) [T/m\(^2\)]

<table>
<thead>
<tr>
<th>Magnet Type</th>
<th>Order</th>
<th>Field [T]</th>
<th>Normalized Gradient [m(^{-n})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>sextupole</td>
<td>(n = 3)</td>
<td>(B_x = \frac{d^2 B_y}{dx^2} \cdot xy)</td>
<td>(k_2 = \frac{1}{B_p} \frac{d^2 B_y}{dx^2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(B_y = \frac{1}{2} \frac{d^2 B_y}{dx^2} \cdot (x^2 - y^2))</td>
<td></td>
</tr>
</tbody>
</table>

This presentation refers to the specified sextupole magnetic strength \(S_s\) [T/m\(^2\)] where \(B_y = S_s \cdot x^2\)
Strength of 2N-pole sector iron-free coils

- Strength \(S \) in T/m\(^{n-1} \) for multipole coil \(n \geq 3 \) was derived from analytical expression [Ref. A. Louzguiti]:

\[
S = S_{\text{current}} + S_{\text{sat pole}}
\]

\[
S_{\text{current}} = \frac{\mu_0 \sqrt{3}}{\pi} \frac{J_0}{(r_a + w)^{N-2}} \left(\frac{1}{N-2} \left(\frac{r_a + w}{r_a} \right)^{N-2} - 1 \right) + \frac{A_\mu}{N+2} \left[1 - \left(\frac{r_a}{r_a + w} \right)^{N+2} \right]
\]

\[
S_{\text{sat pole}} = \frac{\mu_0 N}{\pi} \frac{M_{\text{sat}}}{(r_a + w)^{N-1}} \left(\frac{1}{N-1} \left(\frac{r_a + w}{r_a} \right)^{N-1} - 1 \right) + \frac{A_\mu}{N+1} \left[1 - \left(\frac{r_a}{r_a + w} \right)^{N+1} \right]
\]

- Margin on the load line and quench protection assumption:

\[
J_0 = f \cdot \frac{L_{\text{line}}}{1 + CuSc} \cdot J_{\text{sc}} \cdot \left(B_p \left(\frac{J_0}{L_{\text{line}}} \right) \right)
\]

\[
J_0 = \frac{f \cdot CuSc}{1 + CuSc} \cdot J_{\text{Cu max}}
\]

- \(J_0 \): current density in coil
- \(2N \): number of poles (e.g. \(N=3 \) for sextupole)
- \(w \): coil width

Term due to iron screen, \(A_\mu \leq 1 \) if partly saturated

- \(J_0 \): ensures that percentage along the load line is \(L_{\text{line}} \) set at 80%
- \(J_0 \): ensures that copper current density equal to \(J_{\text{Cu max}} = 1000 \text{ A/mm}^2 \) (\(f \): filling factor)
Optimisation of cos-theta / sector coil

Use of DASH = Design Algorithm for Sextupoles and Higher package developed in 2018, to investigate parameter space and optimise magnet length, cost and complexity

- **User inputs**
 - Magnet type $r_a, T_{op}, l, S_{req}, ...$
 - Iron screen/poles

- **Control**
 - Field quality
 - Stability
 - Quench protection

- **Optimization**
 - Cost
 - Optimal width w_c^* selection

- **Magnet design**
 - Parameters $w_c^*, N_c H_c^*, \lambda^*, J_{op}^*$
 - Strength S_{op}^*

- **ROXIE model**
 - Automatically generated
 - Local optimization

Iterations on cosθ coil width w_c:

- **Cosθ coil height $N_c H_c$** (field quality)

- **Equivalent sector width W of a cos theta coil**

- **Current density J and Cu:Sc ratio λ** (load line + quench protection)

- **Magnet strength S vs w_c**

\[
\int_{r_{in}}^{r_{out}} \left[\sin(3N\theta_c (r)) - \sin(3N\theta (r)) \right] \frac{r}{3} \, dr = 0 \quad (E1)
\]

with $\theta_c (r) = \arcsin \left(\frac{d}{r} \right)$ and $\theta (r) = \arcsin \left(\frac{N_c H_c + d}{r} \right)$

\[
w = r_a \sqrt{\frac{2w_c N_c H_c}{\alpha_n r_a^2} - 1} \quad (E2)
\]

\[
\begin{cases}
 J = \frac{I_f}{1 + \lambda} J_c (B_p (J/I)) \\
 J = \frac{f \lambda}{1 + \lambda} J_{Cu, \text{max}}
\end{cases}
\]
Case 1: LTS Nb$_3$Sn sextupole at 4 K and 10 K

- Optimum when $DV/V_{\text{max}} = -DL/L_{\text{min}}$, ~13% length increase, factor 5 cost saving on SC volume.
- Reduction by 32% of Strength from 4.2K to 10 K
Magnetic parameters table for LTS design

- **LTS flat ribbon cable evaluation at 4.2 K LHe and 10 K Ghe operating temperature**

<table>
<thead>
<tr>
<th>T_{op} (K)</th>
<th>AP diam (mm)</th>
<th>SC type</th>
<th>S_{op} (T.m^-2)</th>
<th>Margin (% to I_{SS})</th>
<th>W_c (mm)</th>
<th>Nb Std. x turns</th>
<th>B_p (T)</th>
<th>B_p/Bo</th>
<th>Cu:nCu</th>
<th>Lop (mH/m)</th>
<th>I (A) per strd</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>70</td>
<td>NbTi</td>
<td>3850</td>
<td>20</td>
<td>29.8</td>
<td>35 x15</td>
<td>5.83</td>
<td>1.2</td>
<td>1.05</td>
<td>1296</td>
<td>360</td>
</tr>
<tr>
<td>4.2</td>
<td>70</td>
<td>Nb$_3$Sn</td>
<td>3850</td>
<td>20</td>
<td>13.7</td>
<td>17 x 16</td>
<td>5.71</td>
<td>1.21</td>
<td>6.71</td>
<td>394</td>
<td>490</td>
</tr>
<tr>
<td>10</td>
<td>70</td>
<td>Nb$_3$Sn</td>
<td>3850</td>
<td>10</td>
<td>13.7</td>
<td>19 x 15</td>
<td>5.4</td>
<td>1.21</td>
<td>1.8</td>
<td>531</td>
<td>439</td>
</tr>
</tbody>
</table>

- Ribbon cable placeholder for study only (single wire or high current Rutherford cables)
- Limited margin on I_{SS} load line at 10K
- Overshoot of $B_p/Bo = 1.21$
- Minimized harmonics, $b_9, b_{15} < 1$ unit
Case 2: HTS ReBCO sextupole design at 10K

- Design based on HTS REBa$_2$Cu$_3$O$_{7-x}$, (ReBCO, RE : rare earth) coated conductors (CCs) tape, PI insulated, (W: 12 mm x tck : 0.13 mm)

- Reference tape superconductor layer thickness of 1 µm and 97 µm for other materials (Hastelloy substrate, silver, copper stabilizer).

- Main focus on the six-fold saddle coils wound scheme (comparison with challenging novel Canted Frenet-Serret winding design)

- Winding topologies based either on single tape or multi stacks conductors (face to face for current bypass*), with single or double layer.

- Temperature excursion study carried out around 10 K for reference.

*face to face ReBCO HTS conductor example

https://www.fujikura.co.jp/eng/products/newbusiness/superconductors/01/superconductor.pdf
Commercial HTS tape features

- Typical specifications for 4-12 mm wide ReBCO 2G HTS tapes, 1-3 µm thick SC layer

<table>
<thead>
<tr>
<th>Width</th>
<th>ReBCO Type</th>
<th>ReBCO Thickness</th>
<th>Deposition Method</th>
<th>Pinning Type</th>
<th>Substrate</th>
<th>Cu Stabilizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 mm</td>
<td>EuBCO</td>
<td>2.5 µm</td>
<td>IBAD/PLD</td>
<td>BHO columns (artificial)</td>
<td>50 µm/Hastelloy</td>
<td>2 x 20 µm electroplated</td>
</tr>
<tr>
<td>4 mm</td>
<td>YBCO</td>
<td>3.1 µm</td>
<td>IBAD/PLD</td>
<td>Y$_2$O$_3$ particles (native)</td>
<td>100 µm/Hastelloy</td>
<td>2 x 20 µm electroplated</td>
</tr>
<tr>
<td>3 mm</td>
<td>EuBCO</td>
<td>3 µm</td>
<td>IBAD/PLD</td>
<td>BHO columns (artificial)</td>
<td>30 µm/Hastelloy</td>
<td>2 x 10 µm electroplated</td>
</tr>
<tr>
<td>4 mm</td>
<td>GdBCO</td>
<td>3 µm</td>
<td>ISD/EB-PVD</td>
<td>Gd$_2$O$_3$ particles (native)</td>
<td>100 µm/Hastelloy</td>
<td>2 x 20 µm electroplated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BHO particles (artificial)</td>
<td>40 µm/Hastelloy</td>
<td>2 x 10 µm PVD-plated</td>
</tr>
</tbody>
</table>

Fig. 1: I_c (A/cm) versus B field (with B perp (ab))
Courtesy C. Senatore, Geneva univ, May 2019-2021

Source 2023

CERN

FCC Week, London, UK, 7th June 2023 – Arnaud Foussat
2D HTS coils predimensionning at 10K

- As ROXIE is structured to model Rutherford cables, we use “equivalent” strand parameters to model Rebco tape cable. (see Appendix). Normal and perp. magnetic field contours derived.

- A HTS tape placeholder, 12 mm wide x 0.1 mm selected, equivalent to HTS 0.32 mm SC strand diameter, Cu:nCu = 50.

- At 10 K, $S = 3850 \, \text{T/m}^2$ achieved with 130 turns, $w_c = 24\, \text{mm}$, single tape, double layer, current of 620 A, ISS% = 75.

Ref: J. Fleiter and A. Ballarino. Parameterization of the critical surface of Fujikura ReBCO HTS

FCC Week, London, UK, 7th June 2023 – Arnaud Foussat
HTS insulated crab sextupole coils variants

<table>
<thead>
<tr>
<th>HTS ReBCO coil type</th>
<th>Winding topology (R in = 35 mm)</th>
<th>Transport Current (A)</th>
<th>Tape width (mm)</th>
<th>Coil width (mm)</th>
<th>Nb_turns per saddle</th>
<th>L tape (m)</th>
<th>Inductance (mH)</th>
<th>Bp (T)</th>
<th>Load line (ISS%)</th>
<th>T_op (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FESC 1 um HTS</td>
<td>Single layer single tape</td>
<td>1150</td>
<td>12</td>
<td>12</td>
<td>100 (1 tape/turn)</td>
<td>460</td>
<td>7</td>
<td>5.9</td>
<td>37</td>
<td>10</td>
</tr>
<tr>
<td>FESC 1 um HTS</td>
<td>Single layer single tape</td>
<td>870</td>
<td>6</td>
<td>6</td>
<td>100</td>
<td>460</td>
<td>8.5</td>
<td>5.9</td>
<td>48</td>
<td>10</td>
</tr>
<tr>
<td>FESC</td>
<td>Single layer single tape</td>
<td>780</td>
<td>4</td>
<td>4</td>
<td>100</td>
<td>460</td>
<td>9.3</td>
<td>5.9</td>
<td>55</td>
<td>10</td>
</tr>
<tr>
<td>FESC 1 um HTS</td>
<td>Double layer (single tape)</td>
<td>900</td>
<td>12</td>
<td>24</td>
<td>100</td>
<td>930</td>
<td>4.6</td>
<td>6</td>
<td>41</td>
<td>10</td>
</tr>
<tr>
<td>FESC 1 um HTS</td>
<td>Double layer Canted Cos-theta sextupole, stack cable</td>
<td>740</td>
<td>4</td>
<td>2 x 4</td>
<td>2 x (840)</td>
<td>1039</td>
<td>64</td>
<td>6.6</td>
<td>85</td>
<td>10</td>
</tr>
</tbody>
</table>

- Use of 1-2 microns thick FESC Fujikura Rebcot layer reference, **insulated thickness 0.125 mm**
- Tape target operating Je at 1200 A/mm² @ 5 T, under \(\perp \) field.
- Iron shield allows gain 15 % on magnetic strength S. 6 joints in saddles against 15 joints in CCT design
- Alternative novel Frenet-Serret frame tape winding (similar HTS4) as CCT sextupole, Courtesy of M. Koratsinos.
3D magnetic model of sextupole saddle HTS coils

- Two layers wound, 12 mm wide tape, 100 turns, wc = 24 mm, Top = 10 K, **900 A / tape**
- **min \(T_{\text{margin}} \) = 59 K**, (41%.ISS), peak \(B_p = 5.9 \, \text{T} \) (Bo = 4.7 T at bore radius \(R_0 = 35 \, \text{mm} \))
Economical aspects

- Use of commercial Rebco tape over a temperature range of 10 - 20 K with maxi. **920 m of conductor per sextupole model, i.e. budget circ.< 40 k unit cost.**
- Note that other structure components are more conventional, to be assessed (< 180 Ke).

Table 1: cost unit for LTS (1 unit Cost / meter) vs. HTS

<table>
<thead>
<tr>
<th>SC type</th>
<th>Relative unit cost / meter</th>
<th>Annual production</th>
<th>Main drivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTS - NbTi</td>
<td>1</td>
<td>Hundreds of tons</td>
<td>Driven by MRI industry</td>
</tr>
<tr>
<td>LTS - Nb3Sn RRP</td>
<td>5</td>
<td>5–10 tons</td>
<td>Driven by general purpose and NMR magnets and by Hi-Lumi LHC</td>
</tr>
<tr>
<td>HTS – REBCO tape</td>
<td>20-50 *</td>
<td>< 1 ton; few tons for fusion</td>
<td>Currently driven by privately funded fusion projects, with 20 T target at 20 K,. REBCO can be a choice for energy efficient magnet in accelerator sector when avoidance of helium becomes a priority</td>
</tr>
</tbody>
</table>

Fig.1 Current price scale up prospect of HTS tape based on production volume over time, together with the raw material cost. [X. Wang, LBNL 2022 - https://doi.org/10.48550/arXiv.2203.08736]
Cryogenics considerations

Conduction cooled high temperature superconducting (HTS) design at 10-20 K benefits from commercial cryocoolers development and the gain in Carnot efficiency, or specific power. (i.e: first stage 80 W @ 55K, second stage 9 W at 8 K)

Table 1. Ideal and Carnot realistic specific power for operating temperature from 4.2 to 273 k

<table>
<thead>
<tr>
<th>Operating temperature T_{op} (K)</th>
<th>Carnot specific power</th>
<th>Realistic specific power (when heat load > 100 W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>273</td>
<td>0.11</td>
<td>0.4</td>
</tr>
<tr>
<td>77</td>
<td>2.94</td>
<td>12-20</td>
</tr>
<tr>
<td>50</td>
<td>5.06</td>
<td>25-35</td>
</tr>
<tr>
<td>20</td>
<td>14.15</td>
<td>100-200</td>
</tr>
<tr>
<td>4.2</td>
<td>71.14</td>
<td>11000</td>
</tr>
</tbody>
</table>

Realistic figure of merit of specific power (watt input at 300 K per watt lifted at T_{op}) shows a gain of 50-100 at 20 K with respect to 4K operation.
Heat load estimation

- Outer shield $T = 80$ K, 30 layers MLI on shield surface
- Brass current leads thermalised at 60 K, for 1000 A
- With heat intercept at 80 K between beam pipe and cold mass (loss reduction by factor 4 on 2nd stage)
- 8 support rods, directly from ambient temperature

<table>
<thead>
<tr>
<th>Heat load Contribution</th>
<th>Second stage (mW)</th>
<th>First stage (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{CM} = 10$ K</td>
<td>$T_{ts} = 80$ K</td>
<td>$T_{CLI} = 60$ K</td>
</tr>
<tr>
<td>HTS leads</td>
<td>282</td>
<td>81.7</td>
</tr>
<tr>
<td>Support rods</td>
<td>224</td>
<td>0.4</td>
</tr>
<tr>
<td>From outer shield</td>
<td>26</td>
<td>0.7</td>
</tr>
<tr>
<td>Splices</td>
<td>42</td>
<td>-</td>
</tr>
<tr>
<td>From beam pipe shield</td>
<td>7</td>
<td>1.2</td>
</tr>
<tr>
<td>Beam-induced</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>581 mW</td>
<td>84.2 W</td>
</tr>
</tbody>
</table>

1st Stage heat load

Courtesy of TE-CRG : P. Borges de Sousa, T. Koettig
Ref EDMS 2895924 v1.0
Conceptual mechanical structure

- Principle of mechanical structure loading discussed to target 50-80 Mpa **preload at RT using bladder and keys (B&K)** with external Aluminium shell (similar to ECR sextupoles Venus, Secral).
 - Net magnetic forces on coil are **560 kN azimuthal and 180 kN radially** (Roxie model)

- Parametric Ansys model developed at CERN to predimension FCC ee crab Sextupole structure (thanks to P. Ferracin, LBNL)

Fig.1. Picture courtesy Danfysik-SuperPower-Aarhus University (2012-2014)HTS conduction cooled dipole

Fig.2 FRIB ECR saddle preload system – 2015 (LBNL)

Fig.3 Developed parametric sextupole structure 60 deg 2D ANSYS model (CERN)

Fig.4 Superconducting ECR ion source: From 24-28 GHz SECRAL to 45 GHz fourth generation ECR. DOI: 10.1063/1.5017479 (2018)
Design & Manufacture consideration

- LTS Nb3Sn saddles coils require **heat treatment and impregnation dedicated tools**
- Double layers winding introduce **simplification** to manage exits and inter-coils joining
- Saddle coils benefit from a **proven B&K preload structure** (HL-LHC, LBNL models..)
- Low current cable option, is best option for conduction cooled option **to limit HTS leads heat loads**.
- Next, to design preload system and **terminal leads connection blocks** compatible with cryocooler **conduction cooling**.
- Options of HTS **insulated vs non-insulated (NI) cable** to be assessed for **quench protection and field quality**. (especially b9 normal harmonics to be optimized < 50 units). Impact of **magnetization on field quality**.
Development flow

1. **Functional specification** of FCC-ee IR crab Sextupole magnet system: Accelerator, Detector and Magnet Systems analyze FCC-ee IR baseline design configuration and provide feedback to address IR Sextupole design set of functional requirements.

2. **Preliminary design of IR Sextupole magnet**: As the many functional requirements for the IR Sextupole are finalized, the preliminary IR magnet design is developed and reviewed. Some design exploration options (down selection of SC technology, such as from adding conduction cooling scheme, heat loads or the magnet structure) to be fed back into the detailed engineering design.

3. **Manufacture and testing of magnet assembly & sub prototypes**: Before committing to the final sextupole systems technical design, test of performance of critical coils subsystems (single saddle coils, windability, assembly trials) including the preloading system on an assembly. Goal: demonstrate close to “final” magnet performance, including final cooling scheme option to check integration and characterize performances.

4. **Detailed design and manufacture files of IR crab sextupole magnet**: At this final stage the sextupole functional requirements are finalized, and the experience gained from prototype production and testing is incorporated into producing final design layouts, component drawings and preparing production / vendor specifications. (dedicated multiple levels of design review foreseen).

Optimistic schedule:

- **07/2024**
 - Preliminary design / Eng. design
- **12/2025**
 - Manufacture and testing
- **03/2026**
 - Detailed design and manufacture
- **01/2023**
 - Functional specification

FCC Week, London, UK, 7th June 2023 – Arnaud Foussat

20
Summary

- FCC-ee IR crab sextupoles requirements were clarified with MDI and Optics teams.
- First magnetic optimization (2D/3D) of the sextupole saddle sector coils shows that required strength (S) of 3850 T.m$^{-2}$ is achievable at 10K with LTS, HTS candidates:
 - HTS ReBCO based coil-dominated sextupole at 10K offers margin to ISS% at 35 up to 60% for current 870 A - 1200 A range in addition to higher stability compared to 10% with LTS. (still 50% margin @ 20K !)
- Next steps, to launch detail engineering on mechanical structure (RT, cold) including conduction cooled interfaces, beam losses. Protection scheme and field quality study
- Although few beam transport HTS Magnets were developed, the Crab IR sextupole is a valuable R&D technology enabler for HTS ReBCO based cryo-cooled warm bore magnet for accelerator use. Development plan to be approved in line with next term report.
Acknowledgement

The author thank his colleagues who made valuable contributions to presented work:

- Matthias Bonora, Glyn Kirby (CERN MSC), Mike Koratzinos (PSI, FCC), for useful discussion on Roxie and RAT models simulation, HTS magnet design aspects
- Marco Masci (CERN MSC), for ANSYS mechanical tuning of prel. model
- Patricia P. Borges de Sousa, T. Koettig (CERN TE/CRG) for cooling scheme useful discussion
- Manuela Boscolo (INFN, FCC MDI) and Katsunobu Oide (FCC Optics) on MDI and optics layout
References

6. Studies on the Origins and Nature of Critical Current Variations in Rare Earth Barium Copper Oxide Coated Conductors, Florida State Univ.
8. X. Wang: REBCO -- a silver bullet for our next high-field magnet and collider budget?, https://doi.org/10.48550/arXiv.2203.08736
Thank you for your attention

Any Questions..
Back up slides
This presentation addresses the preliminary design of a \(\cos(3\theta) \) FCC ee accelerator crab sextupole based on saddle coils using flat LTS Nb3sn ribbon placeholder, then state-of-art SC HTS ReBCO tape conductor.

- This work does not evaluate yet optimization of cooling scheme, quench protection and magnetization effects.
FCC ee chromaticity correction sextupoles

- SY2L -745.30 m ← CRAB
- SY1L -497.82 m
- IP 0 m
- SY1R +118.06 m
- SY2R +276.00 m ← CRAB

\[K = \frac{1}{\theta} \frac{1}{\beta_y} \beta_y \sqrt{\frac{\beta_x^*}{\beta_x}} \]

FCC Week, London, UK, 7th June 2023 – Arnaud Foussat
Optimal coil width vs. Strength

- As integrated $\int_0^{L_m} S \, dl$ strength matters, an optimum exists where little increase in length $\sim 13\%$ is equivalent to SC volume saving of ~ 5

FCC Week, London, UK, 7th June 2023 – Arnaud Foussat
Predimensioning based on sector coil section

- To define the equivalent sector coil (see Fig.), we adjust its coil width to \(w \) such that its area is equal to that of the cosine-theta coil;

\[
w = r_a \left[\sqrt{1 + \frac{2w_C N_C h_C}{\alpha_N r_a^2}} - 1 \right]
\]

- every other parameter is the same (e.g., engineering current density \(J \), ampere-turn value per coil, same aperture radius \(r_a \), or iron screen radius \(r_s \))
ReBCO critical current density surface

- Fit critical surface function as a function of field intensity \(B\), temperature \(T\) and field orientation \((\theta, [\pi/2, \pi])\):

\[
J_c(B, T, \theta) = J_{c,c}(B, T) + \frac{J_{c,ab}(B, T) - J_{c,c}(B, T)}{1 + \left(\frac{-\pi/2}{g(B, T)}\right)^v}
\]

- where \(J_{c,c}\) and \(J_{c,ab}\) are respectively the \(J_c\) in perpendicular and parallel external field orientations, \(\theta\) is the field deviation with respect to c direction. \(v=1.85\) fitting coeff. data

- Anisotropy factor \((g)\) is given by:

\[
g(B, T) = g_0 + g_1 \exp(-[g_2 \exp(g_3 \cdot T)]B)
\]

where \(g_0, g_1, g_2\) and \(g_3\) are constants

Ref: J. Fleiter and A. Ballarino. Parameterization of the critical surface of REBCO conductors from Fujikura. EDMS Nr: 1426239.

Strong dependence on field angle: Factor x4 reduction of \(I_c\) at 5 T, 10K for field \(\perp\) to tape
Roxie HTS strand equivalence model

<table>
<thead>
<tr>
<th>Rutherford cable</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diam</td>
<td>Strand diameter</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>cu/sc</td>
<td>Copper to superconductor ratio</td>
</tr>
<tr>
<td>ns</td>
<td>Number of strands</td>
</tr>
<tr>
<td>Transp.</td>
<td>Transposition pitch</td>
</tr>
<tr>
<td>Height</td>
<td>Height of the cable</td>
</tr>
<tr>
<td>With_i</td>
<td>Width of the cable</td>
</tr>
</tbody>
</table>

\[
\frac{4(12 \times 0.001 \times 15)(50 + 1)}{15 \times \pi}
\]
ReBCO critical current surface dependence on angle

- $I_c (A/cm) = f(B) \text{ at } 90 \text{ and } 180\text{deg with respect to c-axis (\perp).}$
 - Factor x4 reduction of I_c at 5 T, 10K when field perp. to tape
Case #2.0, @ 10K, S = 3850 T.m²

- Maximum normal magnetic field 4.5 T to conductor
- Roxie Lorentz force up to 180kN radial, 580 kN azimuthal loads (see Appendix)
Example of Lorentz load on saddle coils blocks

Electromagnetic Forces (N/m) on Blocks (2D)

<table>
<thead>
<tr>
<th>BLOCK</th>
<th>FORCE -X</th>
<th>FORCE -Y</th>
<th>BLOCK-CENT-X</th>
<th>BLOCK-CENT-Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1861E+06</td>
<td>-0.5290E+06</td>
<td>0.5015E+02</td>
<td>0.9300E+01</td>
</tr>
<tr>
<td>2</td>
<td>-0.3651E+06</td>
<td>0.4256E+06</td>
<td>0.3313E+02</td>
<td>0.3878E+02</td>
</tr>
<tr>
<td>3</td>
<td>0.5511E+06</td>
<td>-0.1034E+06</td>
<td>0.1702E+02</td>
<td>0.4808E+02</td>
</tr>
<tr>
<td>4</td>
<td>-0.5511E+06</td>
<td>0.1034E+06</td>
<td>-0.1702E+02</td>
<td>0.4808E+02</td>
</tr>
<tr>
<td>5</td>
<td>0.3651E+06</td>
<td>-0.4256E+06</td>
<td>-0.3313E+02</td>
<td>0.3878E+02</td>
</tr>
<tr>
<td>6</td>
<td>-0.1861E+06</td>
<td>0.5290E+06</td>
<td>-0.5015E+02</td>
<td>0.9300E+01</td>
</tr>
<tr>
<td>7</td>
<td>0.3651E+06</td>
<td>0.5290E+06</td>
<td>-0.5015E+02</td>
<td>-0.9300E+01</td>
</tr>
<tr>
<td>8</td>
<td>-0.5511E+06</td>
<td>0.1034E+06</td>
<td>0.1702E+02</td>
<td>-0.4808E+02</td>
</tr>
<tr>
<td>9</td>
<td>0.5511E+06</td>
<td>-0.1034E+06</td>
<td>-0.1702E+02</td>
<td>-0.4808E+02</td>
</tr>
<tr>
<td>10</td>
<td>-0.3651E+06</td>
<td>-0.4256E+06</td>
<td>0.3313E+02</td>
<td>-0.3878E+02</td>
</tr>
<tr>
<td>11</td>
<td>0.1861E+06</td>
<td>-0.5290E+06</td>
<td>0.5015E+02</td>
<td>-0.9300E+01</td>
</tr>
<tr>
<td>12</td>
<td>0.1861E+06</td>
<td>0.5290E+06</td>
<td>0.5015E+02</td>
<td>-0.9300E+01</td>
</tr>
<tr>
<td>SUM:</td>
<td>-0.9022E-09</td>
<td>-0.4657E-09</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electromagnetic Forces (N/m) on Blocks (2D) - And - to Conductors (2D)

| BLOCK | FORCE || FORCE | BLOCK-CENT-X | BLOCK-CENT-Y |
|-------|----------|----------|---------------|---------------|
| 1 | 0.1861E+06 | -0.5290E+06 | 0.5015E+02 | 0.9300E+01 |
| 2 | 0.1861E+06 | 0.5290E+06 | 0.3313E+02 | 0.3878E+02 |
| 3 | 0.1861E+06 | -0.5290E+06 | 0.3313E+02 | 0.3878E+02 |
| 4 | 0.1861E+06 | 0.5290E+06 | -0.3313E+02 | 0.3878E+02 |
| 5 | 0.1861E+06 | -0.5290E+06 | -0.3313E+02 | -0.3878E+02 |
| 6 | 0.1861E+06 | 0.5290E+06 | -0.5015E+02 | 0.9300E+01 |
| 7 | 0.1861E+06 | -0.5290E+06 | -0.5015E+02 | -0.9300E+01 |
| 8 | 0.1861E+06 | 0.5290E+06 | -0.5015E+02 | -0.9300E+01 |
| 9 | 0.1861E+06 | -0.5290E+06 | -0.1702E+02 | -0.4808E+02 |
| 10 | 0.1861E+06 | 0.5290E+06 | -0.1702E+02 | -0.4808E+02 |
| 11 | 0.1861E+06 | -0.5290E+06 | 0.3313E+02 | -0.3878E+02 |
| 12 | 0.1861E+06 | 0.5290E+06 | 0.3313E+02 | -0.3878E+02 |
| SUM: | 0.2233E+07 | 0.8149E-09 | 0.5015E+02 | -0.9300E+01 |

Radial and azimuthal load in order of several ten’s of tons.
Heat loads to the shield/CL T level – assumptions

- **Radiation from the beam pipe**
 - If no intercept, no additional heat load at this level
 - If intercept present, emissivity = 0.06 for shield (mech. polished copper)
 - Outer diameter of beam pipe = 60 mm (*i.e.* 5 mm gap to coil aperture)
 - Beam pipe temperature = 300 K
- **Conduction via support rods**
 - Considered 8 rods from 300 K directly to the shield at 80 K
 - Material G10 in normal direction, diameter = 8 mm, length = 100 mm
- **Radiation from ambient (vacuum vessel)**
 - Diameter of thermal shield = 500 mm
 - Considered 30 layers MLI on the outer surface of shield
 - Shield temperature = 80 K
- **Conduction via current leads**
 - Considered pair of leads optimized for operating current
 - Material: brass
 - Current = 1000 A
 - Warm end at 300 K, cold end at 60 K

Shield temperature level:
- 60 K for current leads (closely thermalised to heat sink)
- 80 K for thermal shields and support rods, as less coupled to heat sink
Heat loads to the cold mass – assumptions

- **Radiation from the beam pipe**
 - Inner diameter of cold mass = 70 mm
 - Outer diameter of beam pipe = 60 mm (i.e. 5 mm gap to coil aperture)
 - Beam pipe temperature = 300 K
 - Calculations with/without thermal shield intercept at 80 K:
 - If no intercept, emissivity = 0.1 for beam pipe and cold mass (stainless steel)
 - If intercept present, emissivity = 0.06 for shield (mech. polished copper)

- **Conduction via support rods**
 - Considered 8 rods from 300 K directly to the cold mass
 - Material G10 in normal direction, diameter = 8 mm, length = 200 mm

- **Conduction via HTS current leads**
 - Heat inleak taken for pair of standard HTS leads between 64 K and 4.2 K from HTS-110 Magnetic Solutions¹
 - Current = 1000 A

- **Radiation from outer thermal shield**
 - Outer diameter of cold mass = 400 mm
 - Diameter of thermal shield = 500 mm
 - Considered 10 layers MLI on the outer surface of cold mass
 - Shield temperature = 80 K

- **Joule heating due to splice resistance**
 - Number of splices = 14
 - Resistance of each splice = 3 nΩ
 - Current = 1000 A

- **Beam-induced effects (if any)**
 - Presently no beam-induced effects considered
 - Can be easily added to the estimation

Cold mass temperature options: 4.5 K, 10 K and 20 K

FCC Week, London, UK, 7th June 2023 – Arnaud Foussat
Past conduction-cooled HTS accelerator magnet

Courtesy Danfysik-SuperPower-Aarhus University (2012-2014)
- 14 saddle coils bent after racetrack-like winding
- Pancakes joined by solders in coil ends (6-10 cm)

Interface Cu plates for cryocooler (x 2) mounting (Top cold mass~ 18 K)

SuperKEKB HTS sextupole 200T/m2, B0: 2.4 T, Aug. 2019
Courtesy K Tsuchiya, KEK, Japan

Aug.2023