

DIGITAL TWINS: CURRENT ACTIVITIES IN MECHANICAL AND MATERIALS ENGINEERING GROUP AT CERN AND PERSPECTIVES FOR FCC-EE

CERN, MME-DT Core Working Group
S. Atieh, L. Baudin, M. Garlaschè, G. Papazoglou, K. Kandemir, A. Perez, O. Sacristan
With the help of CERN, BE/GM
H. Mainaud Durand

Mechanical and Materials Engineering EN-MME group at CERN Domains of Activity

Service working as support for CERN-wide users

Digital Twins: MME Know-how & Focus

8th June 2023 FCC Week 2023

Know-how from design, to production and qualification of **mechanical systems**

Collaboration and interaction with

- other CERN stakeholders
- Universities, Laboratories, Institutes, Industry. In the form of

MME GOAL for DT is to reach **readiness for tackling Digital Twins** for CERN users, of **bespoke mechanical systems**

- awareness and experience on DT break even point
- maturity to interact with partners for high level DT

8th June 2023 FCC Week 2023

Proof Of Principle: DT Structure

Proof Of Principle: HL-LHC CRAB - Support Blades

Proof Of Principle: Sims and DAQ

Experimental measurement campaign

Proof Of Principle: Supervised Training

Proof Of Principle: DT deployment on GUI

Information display on a web-based application

- live
- from reduce input data
- without requiring licenced software

Detection of "untrained" situations

FCC-ee Arc Cell Challenges

Challenges for design of the arc's components Size for the facility:

≈ 3000 Arc Half cells

8th June 2023 FCC Week 2023

Booster + Collider

High Radiation level

Gain time, Limit the doses:

Automatized installation/maintenance operations

- Reduce the number of components
- Develop simple and robust components for high reliability

Needs to invest resources on the engineering smart & cost effective components

Mock-up to be build end of 2025:

- Installation/Operation procedure (robot accessibility...)
- Instrumentation/Test
- Simulation's benchmark

FCC-ee Arc Cell Challenges

Challenges for the alignment and survey (H. Mainaud Durand's talks in <u>Academic Training</u>, <u>FCC IS Workshop</u>)

Tolerances of mechanical alignment before Beam Based Alignment

8th June 2023 FCC Week 2023

Type	ΔX (μm)	ΔY (μm)	ΔPSI (μrad)
Arc quadrupole*	50	50	300
Arc sextupoles*	50	50	300
Dipoles	1000	1000	300
Girders	150	150	-
IR quadrupole	100	100	250
IR sextupoles	100	100	250
BPM**	-	-	100

^{*} misalignment relative to girder placement

Ground Stability

Brand new tunnel:

unknown ground motion

Thermal Stability

Temperature gradients

- Air: +8°C in 108 m / -6°C in 10 m (EN/CV)
- Cooling Water: ΔT = + 25°C (TE/VSC, TE/MSC)

Needs for R&D:

Development of specific alignment strategies and methods for the smoothing and maintenance of the alignment:

- Permanent geodetic network (development of SLB)
- Survey Wagon (FSI, Laser Trackers)

Pre-alignment of 3000 girders:

- PACMAN-like strategy for fiducialisation
- Stability during storage, transport and installation

^{**} misalignment relative to quadrupole placement

Context for a Digital Twins related to FCC-ee Arc Cell Mock-up

<u>Context:</u> preliminary assembly of FCC-ee collider Short Straight Section available in the coming months

Study on the influence of temperature on the magnet center position:

Temperature measurements by varying:

- Ambient Air Temperature
- (Air Flow)
- Magnet Powering
- Synchrotron Radiation

Measurement of the magnet center position

Benchmark of FEA:

Validation of the thermal and mechanical of girder assembly behavior

Digital Twins:

Prediction of the magnetic axis displacement during operation

Pre-correction (offset) applied during pre-alignment of each component on the girder

CLIC Lab Module is still assembled at CERN

Lucie BAUDIN - EN/MME CERN

Context for a Digital Twins related to FCC-ee Arc Cell Mock-up

Study on the influence of storage, transport and installation parameters on the magnet center position:

Storage conditions

Thermal cycles during the storage of the pre-aligned girders

Vibration during Transport dans Handling

- Vibrations exposed to LHC components (cryomagnets and detectors) have been characterized
- The mis-alignment after controlled vibrations to be characterized

Installation in a specific environment in the FCC tunnel

- Tilt (1% slope in the FCC tunnel) → The mis-alignment to be characterized
- Ambient temperature controlled by ventilation cf EN/CV

Digital Twins:

Prediction of the magnetic axis displacement during storage, transport and installation...

Pre-correction (offset) applied during pre-alignment of each component on the girder

Lucie BAUDIN - EN/MME CERN

LHC Tunnel: Slope, Tilt...

Conclusion & Next Steps

Digital Twins is a new tool with great potential ...

... also for mechanical components!

Advantages of Digital Twins vs traditional modelling & measuring uses:

- live data
- Component's parameters that would not be instantaneously accessible

Sensors optimization Operation optimization (for components that are difficult to access or those failure is critical)

Great interest for FCC mechanical components!

Thank you for your attention.

EN-MME – Organization and Domains of Activity

MME **Materials & Mechanical Engineering** GL: S. Atieh DGL: A. Bertarelli Engineering Design & Measurements O. Capatina **Engineering Design & Simulation** A. Bertarelli Fabrication Methods & Subcontracting A. Dallocchio Forming & Welding G Favre Machining & Maintenance M. Garlaschè Materials, Metrology & Ndt S. Sqobba

The **mandate** of the MME group is to provide to the CERN community specific engineering solutions combining **mechanical design**, **fabrication and material sciences**, using in-house and industry facilities, for **accelerator components and physics detectors**

Design

Fabrication

Materials

- Design Office
- Engineering Unit
- Mechanical Measurements Laboratory
 - 40+ designers and 15+ engineers
- Mechanical workshop (4000 m2)
 - 60+ technicians and 10+ engineers
 - · CNC machining . Assembly & Metal forming
 - · Welding (TIG, MIG, EBW, laser) & Vacuum Brazing
- Technical Subcontracting unit
- Material science consultancy
 - Metallurgical analyses, microscopy including FIB, Mechanical tests
- NDT: UT, radiography, microtomography
- Metrology: 350 m² Lab., several CMM

CRYOSTAT

Design of complex mech. systems

Advanced computations, multiphysics
analyses (e.g., explicit simulations of fast/large deformation events)

CRAB Niobum Cavity

EN-MME – Mechanical Workshop & Metrology

Its core mission is to provide service to the Organization for:

Urgent needs (repairing, tunnel interventions, urgent fabrication...)

- Prototypes / proof of principle
- Multi-technology fabrication projects

FCC

Preparation Materials and (Non-)Destructive Testing

Advanced microscopy, microanalysis ⇒

SEM Zeiss Sigma equipped with an EBSD detector

⇐ Crystallography

SEM ZEISS Sigma 500 equipped with an EDS Extreme Oxford

EN-MME – Mech. Measurement Lab

Reference laboratory for mechanical and physical measurements (stress/strain, vibrations, seismic, thermal properties ...) for a wide range of CERN components and facilities

Measurements are used to

- define input properties for design and FEA
- on real components: characterise, benchmark design predictions
- in various environmental conditions (cryogenic temperatures, high radiation environment and high magnetic fields)

<u>Lab website with a virtual</u> visit

Data from every system are continuously streamed and/or stored on the Cloud/DFS

EN-MME – Integrated Activities: HL-LHC Collimators

Assembly and Metrology

Online monitoring and advanced simulations benchmarking

Installed system

- The "protection" system of LHC and HL-LHC, capable of absorbing the energy of an Airbus A320 flying at 520 km/h, concentrated in the cross-section of a needle
- Cross-department project, with international collaborations, led by BE-ABP and SY-STI groups

Mechanical Measurements (SG, FBG ..)

Materials Science (novel materials R&D) with Knowledge Transfer

Metallurgy and Microscopy

Proof Of Principle: DT Model & GUI

DT Blade GUI Link

https://mml.web.cern.ch/d/ooUmm-a4k/digital twins plate lucie?orgld=1&from=1682666584446&to=1682666643473

Validation of selected models by comparison of prediction with a control sample measurement

Digital Twin
'Transfer Function'

HandySCAN

- For smaller parts 50 mm to 4 m
- Better accuracy
- No need for the C-track
- Less invasive

	HandySCAN 307 ^{™C}	HandySCAN BLACK ^{MC}	HandySCAN BLACK ^{MC} I Elite
EXACTITUDE (3)	Jusqu'à 0,040 mm	0,035 mm	0,025 mm
PERFORMANCE VOLUMÉTRIQUE (2) (basée sur la taille des pièces)	0,020 mm + 0,100 mm/m	0,020 mm + 0,060 mm/m	0,020 mm + 0,040 mm/m
PERFORMANCE VOLUMÉTRIQUE AVEC MaxSHOT Next ^{MD} I Elite ⁽³⁾		0,020 mm + 0,015 mm/m	
RÉSOLUTION DE MESURE	0,100 mm	0,025 mm	
RÉSOLUTION DU MAILLAGE	0,200 mm	0,100 mm	
CADENCE DES MESURES	480 000 mesures/s	800 000 mesures/s	1 300 000 mesures/s
SOURCE DE LUMIÈRE	7 croix laser rouges	7 croix laser bleues	11 croix laser bleues (+ 1 ligne supplémentaire)
CLASSE DE LASER	2M (sécuritaire pour l'œil)		
ZONE DE NUMÉRISATION	275 x 250 mm	275 x 250 mm 310 x 350 mm	
DISTANCE NOMINALE		300 mm	
PROFONDEUR DE CHAMP		250 mm	
TAILLE DES PIÈCES (recommandée)	0,1 - 4 m		

FCC-ee Arc Cell Challenge

Challenges for design of the arc's components Size for the facility:

- ≈ 3000 Arc Half cells
- Booster + Collider

Radiation level:

• 1 year of FCC operation = 11 yrs of LEP operation

Cost optimization:

- Reduce the number of sensors
- Develop simple and robust sensors

Gain time, Limit the doses:

Automatized installation/maintenance operations

Challenges for the alignment and survey (H. Mainaud Durand's talks in <u>Academic Training</u>, <u>FCC IS</u> <u>Workshop</u>)

Tolerances of mechanical alignment before Beam Based Alignment

Brand new tunnel:

· unknown ground motion

Temperature gradients

- Air: +8°C in 108 m / -6°C in 10 m (EN/CV)
- Cooling Water: $\Delta T = +25^{\circ}C$ (TE/VSC, TE/MSC)

	(μm)	(μm)	(μrad)
Arc quadrupole*	50	50	300
Arc sextupoles*	50	50	300
Dipoles	1000	1000	300
Girders	150	150	-
IR quadrupole	100	100	250
IR sextupoles	100	100	250
BPM**	-	-	100

^{*} misalignment relative to girder placement

Pre-alignment of 3000 gird

- · PACMAN-like strategy
- Stability during storage

Development of specific a smoothing and maintenan

- · Permanent geodetic ne
 - Survey Wagon (FSI, La

^{**} misalignment relative to quadrupole placement

FCC-ee Arc Cell Mock-up

Lorem Ipsum Dolor

Past/On-going studies:

Conceptual design:

- Take part in integration studies (Transport, Safety,...)
- System's interfaces (Magnets, Vacuum chamber, BPM)
- Design of the supporting structure
- Design of the support
- · Dynamic stability studies

Future studies:

Optimization of the mechanical supporting structure:

- Design Parameters
- Choice of material (mineral cast, damping fillers)
- Choice of the adjustment system (after the definition of the alignment strategy)

