

R&D towards an 800 MHz cryomodule

Sam Posen

FCC Week

June 2023

Overview

- High Q₀ for FCC-ee
- 800 MHz Cavity Studies
- Fermilab Cryomodule Design & Production
- Summary

1. High Q_0 for FCC-ee

2. 800 MHz Cavity Studies

4. Summary

3. Fermilab Cryomodule Design & Production

Impact of Q_0 -> Cryogenic Infrastructure, Operating Cost

- Quality factor of cavities determines heat deposited at cryogenic temperatures
 - Especially important for high duty factor RF (particularly CW)
- Heat deposition at cryogenic temperatures determines the size of cryoplant needed
 - Cost → up-front infrastructure cost and longer term operating costs
 - Sustainability → Optimization of ~100 nm of cavity inner surface can have a big impact on footprint of cryogenic systems
- 2 K inverse coefficient of performance is ~800 W/W

Cryoplant mage from CERN

6/7/2023

High Q₀ for FCC-ee 800 MHz Systems

- Focusing on 800 MHz systems (bulk niobium)
- Bulk niobium high Q₀ treatments include nitrogen doping, mid-T bake, Nb₃Sn
- Flux expulsion also important to consider

Slide from B. Naydenov, CERN

Nitrogen Doping

- Cavity is heat treated in vacuum at ~800 C
- Small nitrogen pressure injected into furnace for a few minutes
- Creates nitrogen interstitials as well as surface layer of niobium nitride (poorly superconducting)
- NbN removed via electropolishing of a few micrometers
- Now industrialized and used for LCLS-II production cavities
- Previous state of the art was Q₀ ~ 1.5x10¹⁰;
 N-doping made it possible to have LCLS-II
 Q₀ specification of 2.7x10¹⁰

Medium Temperature (mid-T) Bake

- Cavity is heat treated typically in the range ~300-400 C: above low temperature bake, and below high temperature degas
- Best understood mechanism is that oxide dissociates and oxygen impurities diffuse into RF layer, creating interstitials
- Similar to nitrogen doping, but without additional electropolishing step – simpler, and less prone to non-uniform EP, can be important for larger cavity geometries

Nb oxide Bulk nb PHYSICAL REVIEW APPLIED

Journals Authors Referees Browse Search Press &

Open Access

Ultralow Surface Resistance via Vacuum Heat Treatment of Superconducting Radio-Frequency Cavities

S. Posen, A. Romanenko, A. Grasselino, O.S. Meirychuk, and D.A. Sergetskov Phys. Rev. Applet 30, 104024—Published J. Hanpury 2020

Influence of Furnace Baking on Q-E Behavior of Superconducting Accelerating Cavities

H. Ito, ^{1, a)} H. Araki, ¹ K. Takahashi, ² and K. Umemori ^{1, 2}

1) High Energy Accelerator Research Organization (KEK), 305-0801 Tsukuba, Ibaraki,

Japan 2) The Graduate University for Advanced Studies, SOKENDAI, 305-0801 Tsukuba, Ibaraki, Innov.

(Dated: 29 January 2021)

Mid-T Bake for PIP-II LB650 Cryomodule

 High Q recipe using Mid-T furnace baking was endorsed by a review committee and adopted for LB650 cryomodules

Magnetic Flux Expulsion

- Meissner Effect niobium tends to expel applied magnetic flux
- well below T_c
- However, flux can become trapped in superconductor during cooldown, and trapped flux degrades Q₀
- Large impact on LCLS-II CM Q₀. In-situ demag of cryomodules to reduce ambient field also results in improvement.

Ambient magnetic field

during cooldown

S. Posen, M. Checchin, A. C. Crawford . A. Grassellino, M. Martinello, O. S. Melnychuk, A. Rom

Flux Expulsion and LCLS-II

- High Q₀ depends on:
 - High massflow cooldown to create spatial thermal gradient to expel flux (each CM has its own JT valve)
 - Careful heat treatment of cavities (typically ~900 C) to achieve high expulsion
- 3x10¹⁰ is achieved in the linac

PAPER • OPEN ACCESS

Operational experience from LCLS-II cryomodule testing

To cite this article: R Wang et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 278 012187

Fermilab Nb₃Sn Coating System

First and only Nb₃Sn coating chamber capable of coating 1.3 GHz 9-cell cavities or 5-cell 650 MHz cavities

Nb₃Sn Coating – Possibility for 4 K Operation

- Inverse coefficient of performance substantially (~3x) better at 4 K than at 2 K
- Advantages for efficiency, avoids subatmospheric helium and cold compressors
- Still under development, but promising results for bare multicells

PAPER • OPEN ACCESS

Advances in Nb₃Sn superconducting radiofrequency cavities towards first practical accelerator applications

S Posen¹ D. J Lee^{1,2} D. N Seidman^{2,3}, A Romanenko¹, B Tennis¹, O S Melnychuk¹ and

Published 11 January 2021 • © 2021 The Author(s). Published by IOP Publishing Ltd

Citation S Posen et al 2021 Supercond, Sci. Technol. 34 025007

Includes correction for stainless steel flanges $2x0.8 n\Omega$

Nb₃Sn-coated 9-cell cavities TB9ACC014 and **TB9AES005**

12

2. 800 MHz Cavity Studies

1. High Q_0 for FCC-ee

3. Fermilab Cryomodule Design & Production

4. Summary

Prototype 800 MHz Cavity R&D

From Frank Marhauser, FCC Week 2018

- 1-cell and 5-cell 800 MHz cavities were fabricated, treated, and tested by JLab
- Copper cavities were also fabricated (not discussed here)
- 5-cell cavity does not have additional ports (e.g. coupler, HOM, pickup)

800 MHz Cavity Testing at JLab

- Both cavities had quite good performance in initial testing, reaching ~30 MV/m with Q₀ in the range of 2-3x10¹⁰ at 2.0 K
- Continued processing of single cell (including electropolishing) led to degradation – cavity limited by multipacting

From Frank Marhauser, FCC Week 2018

1-Cell 800 MHz Cavity Testing at Fermilab

 Cavity was sent to Fermilab – testing in March 2023 confirmed multipacting limit, unable to process or 'jump' over – similar to JLab post-EP result

1-Cell 800 MHz Cavity Inspection

- Boroscope inspection revealed substantial defect at equator weld, likely worsened by EP
- Defect visible by eye on interior
- Replica shows ~1 mm ridge, indicating a trench on cavity
- Expected to be cause for strong multipacting
- Currently discussing if fix is possible
 - Deep mechanical polishing
 - Reweld may be possible but risk of blowout
- Meanwhile working on 5-cell

5-Cell 800 MHz Cavity Inspection

- 5-cell cavity recently arrived at Fermilab
- Optical inspection shows some signs of incomplete welds, but not as bad as 1-cell
- Possibly some etching in previous EP based on inspection – plan to use lessons from FNAL 650 MHz experience to try to improve further

5-Cell 800 MHz Cavity Testing at Fermilab

- Working now on preparation of 5-cell for baseline testing
- If successful, possible next steps include studies with mid-T bake, EP using 650 MHz lessons learned, additional mid-T bake temperatures
- Nb₃Sn coating may also be tried, but lack of stiffening rings on 5-cell cavity may be a challenge – Nb₃Sn is brittle, and 1100 C heat treatment makes Nb substrate soft (1-cell would be preferable for Nb₃Sn if it can be recovered)

3. Fermilab CM Design & Production

1. High Q_0 for FCC-ee

2. 800 MHz Cavity Studies

4. Summary

LCLS-II and LCLS-II-HE

- ILC-like CMs, but operating in CW mode, nitrogen-doped cavities
- FNAL high Q SRF R&D is critical: N-doping, flux expulsion
- LCLS-II was the first large-scale SRF CM production for Fermilab
- Designed, built, tested, and delivered 1.3 GHz & 3.9 GHz CMs
- Fermilab cryomodule results exceed specifications
 - (17) 1.3 GHz cryomodules: average energy gain/CM = 158 MV (spec 128) MV), average $Q_0 = 3x10^{10}$ (spec 2.7x10¹⁰)
 - (3) 3.9 GHz cryomodules: average energy gain/CM = 46.5 MV (spec 41) MV), average $Q_0 = 3.45 \times 10^9$ (spec 1.5x10⁹)
- LCLS-II commissioning now underway, with Fermilab experts participating – performance is very promising so far
- LCLS-II-HE: ~20 more CMs from FNAL, R&D was critical to achieve high-Q at higher gradients ~21 MV/m
- **In summary**: substantial 1.3 GHz CM production experience, excellent performance, FNAL R&D advances were critical

22

PIP-II superconducting CW linac

PIP-II linac is technically complex, state of the art superconducting RF accelerator

PIP-II style cryomodule

The "Strongback" serves as the coldmass foundation for PIP-II cryomodules.

It will support all the elements of the beamline, shielding, and piping from below. This will enable the entire coldmass to be assembled and aligned as a unit which is then inserted into the vacuum vessel during final assembly.

Maintaining the **strongback at room temperature** will help to minimize axial movement of the cold elements during cooldown, which will reduce the displacement of couplers, current leads, and many of the internal piping components.

PIP-II style cryomodule

Cryomodule String Assembly

- New cleanroom was commissioned last year to allow PIP-II CM assembly in parallel to LCLS-II
- Designed to be compatible with both PIP-II cryomodules and 1.3 GHz ILC-like cryomodules
- Crucial for PIP-II, but new infrastructure will be available after PIP-II

Slide by O. Pronitchev

New SRF String Assembly Cleanroom with PIP-II HB650 String

Cryomodule Testing

- Cryomodule test stands at the Fermilab Cryomodule Test Facility (CMTF)
 characterize cryomodule performance prior to installation in the tunnel
- Cryogenics, pumps, RF power, shielding, instrumentation, DAQ

28

3. Fermilab Cryomodule Design & Production

4. Summary

1. High Q_0 for FCC-ee

2. 800 MHz Cavity Studies

Summary

- High Q₀ is impactful for power consumption and infrastructure cost of FCCee cryogenic system, particularly at highest energy configurations
- State-of-the-art SRF cavity treatments such as mid-T bake and Nb₃Sn can help enable high Q at gradients relevant to FCCee
- Fermilab SRF team has substantial experience at frequencies near (above and below) 800 MHz, now working on 800 MHz cavities built by JLab
- Fermilab SRF team has key experience from PIP-II and LCLS-II including cryomodule design and production; facilities are capable for FCCee 800 MHz CMs

