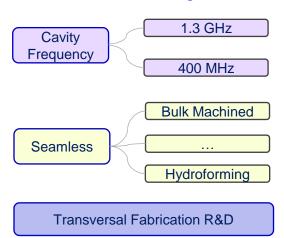
Engineering Developments Towards Seamless Substrates

Joanna Święszek

KA on behalf of FCC SRF WP2 and CERN EN-MME Group

FCC Week 5-9 June 2023

FCC SRF WP2: Towards 400MHz Manufacturing


End goal is to **define fabrication route for cavities conform to CDR baseline** requirements. In order to do this:

- Identify the best manufacturing strategy for 400MHz in view of RF performance, series production
- Through 1.3 GHz, supporting developments of all SRF stakeholders

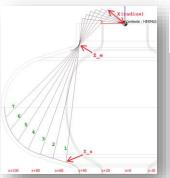
Focus on:

- Copper, as Nb Substrate
- Overall optimisation of welds: seamless equator (as baseline), fine tuning EB welding (iris)

Fabrication Program

1.3 GHz Monoblock

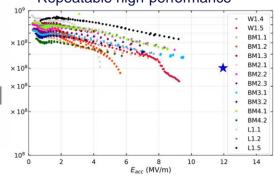
First bulk-machined monoblock cavity


Aim: provide monoblock as reference component for RF studies

Specific process definition for bulk machining:

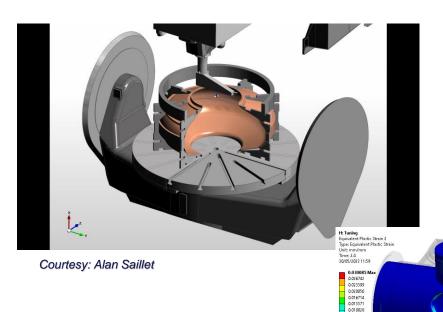
- Tool holder design & manufacturing
- CAM programming, machining simulation
- Diamond finishing

Courtesy: Karol Ścibor


Finishing turning of the inner cavity surface with a diamond

Reminder

- Roughness Ra ~ 0.15 µm
- Max. internal shape deviation ~ 20 µm
- Wall thickness variations < 20 µm


Very good RF results! Repeatable high-performance

Courtesy: L. Veg-Cid and A. Bianchi

400 MHz Monoblock

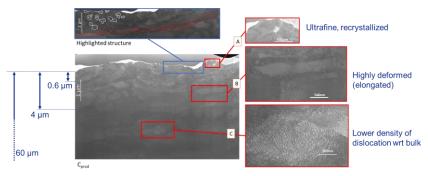
Aim: provide monoblock as reference component for RF studies

STATUS:

- Cavity Loading Simulations and Design: done
- Fabrication process: defined and simulated; trials ongoing on partial Aluminum dummy
- Fabrication Tooling: designed and under production
- Cu OFE Material: received and under qualification

Cut-offs: under production

Courtesy: Karol Ścibor

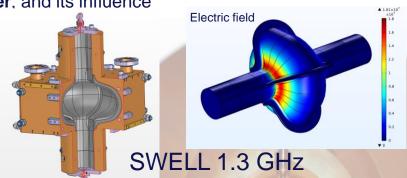


R&D: Machining & Affected Surface Layer

Aim: master the impact of machining on the surface layer; and its influence

on later coating performance

Study finalized for **turning**:



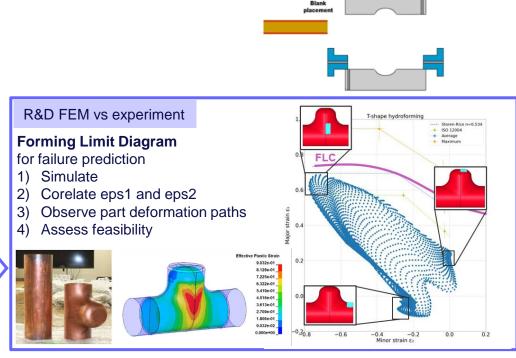
Experimental analysis of subsurface integrity during fine turning of OFE copper for radiofrequency cavity manufacturing
A. Camelin, P. Naisson, G. Poulachon, A. Dácunto, S. Atieh

Ongoing study for **milling**:

- Samples based on SWELL fabrication techniques
- Representing different machining scenarios
- DOE: Cutters, machining paths, cutting conditions

CERN Ref.: M. Garlasche', M. Kolenic

SWELL progress and status F. Peauger, M. Timmins



Hydroforming: Introduction

PAST: HF identified as suitable process for manufacturing seamless substrates.

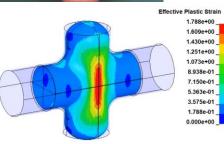
NOW: process optimization, minimizing number of steps, having:

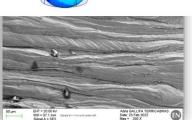
- reliable fabrication techniques
- advanced capabilities in process simulations (through FEM)
- novel material characterization
- > COLLABORATION

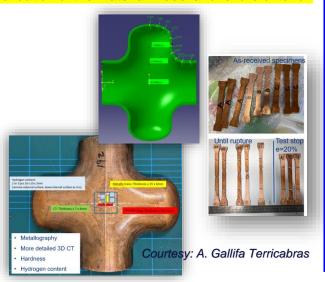
CERN: *J. Święszek, A. Gallifa Terricabras, D. Smakulska, M. Garlasche', S. Atieh*

- Process guidelines
- Raw material and treatments definition
- Simulations

KEK: A. Yamamoto, M. Yamanaka

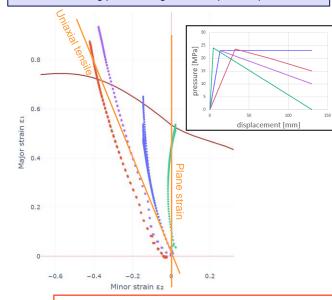

- Raw material procurement
- Tools design and manufacturing
- Hydroforming trials


Hydroforming: Coupled FEM and experimental qualification



BENCHMARK PIECE

- 1) Hydroform
- 2) Measure
 - 3D Shape & deformed mesh
 - Thickness, roughness, hardness
- 3) Benchmark with numerical simulations
- 4) Validation of the material model and failure criterion



Collaboration CERN-KEK

-) Process parameter influence
- 6) Comparison of different hydroforming strategies
- 7) Process optimization
- Process parameter (pressure vs displacement) definition

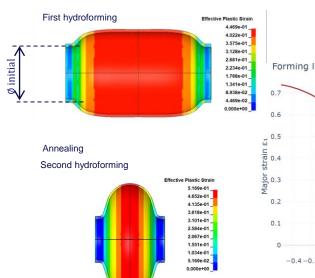
FLD with straining paths for a given set of process parameters

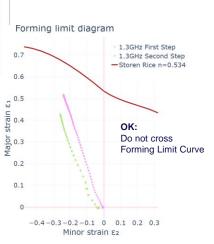
Formability highly dependent on the process parameters. **Optimization by simulations!**

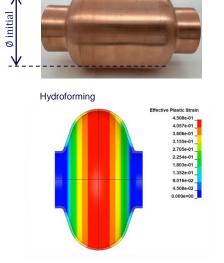
Collaboration CERN-KEK

Hydroforming: 1.3 GHz Cavity

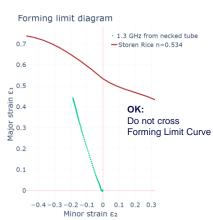
HYDROFORMING STRATEGIES


- Studied and optimized through simulations
- Based on detailed material characterization
- Verified against failure model


Both strategies are feasible with the material properties of tested Cu-OFE



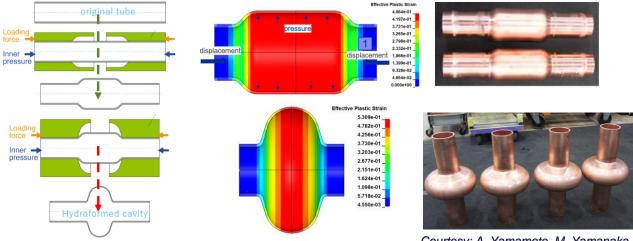
Necking + Hydroforming


NO intermediate heat treatment

Spinning

Collaboration CERN-KEK

Hydroforming: status

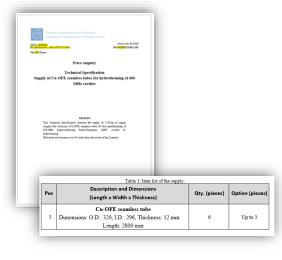

Baseline

two-step Hydroforming

ONE intermediate heat treatment

1.3 GHz

Successful hydroforming of 1.3 GHz cavity with <u>only two expansion steps</u>, feasibility and repeatability proved!


Defined by M. Yamanaka

Simulated by CERN

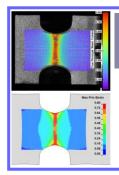
Courtesy: A. Yamamoto, M. Yamanaka
Produced by KEK

400 MHz

- Raw material specified: ready for procurement
- Hydroforming process strategy defined

New Nb material for cost saving

A. Yamamoto, International Workshop on Future Linear Colliders



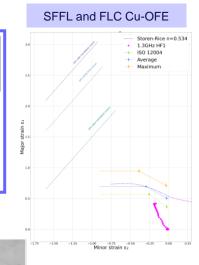
Hydroforming: Material studies

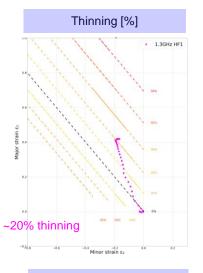
Material characterization as input for simulation

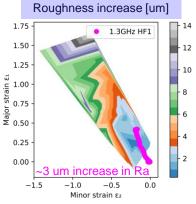
(for given material batch):

- True strain stress curve
- Failure model

NOVEL APPROACH OF FAILURE FOR SRF APPLIATION: SRFLD

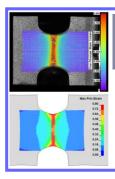

- **Evolving Forming Limit Diagram** to incorporate features of interest for SRF
- A tool for prediction of parameters of interest, both for fabrication and SRF (.. final surface roughness, wall thickness..)


Material R&D activities for optimizing Nb coating:


- Roughness studies (at different stages of the process) and roughness amelioration
- Optimization of the annealing process: temperature/time (microstructure optimization) 50 µm
- Hydrogen content (avoid hydrides formation)

Courtesy: A. Gallifa Terricabras, G. Rosaz

Example of results from the numerical simulation plotted on SRFLD



Hydroforming: Material studies

Material characterization as input for simulation

(for given material batch):

- True strain stress curve
- Failure model

NOVEL APPROACH OF FAILURE FOR SRF APPLIATION: SRFLD

- Evolving Forming Limit Diagram to incorporate features of interest for SRF
- A tool for prediction of parameters of interest, both for fabrication and SRF (.. final surface roughness, wall thickness..)

Material R&D activities for optimizing Nb coating:

- Roughness studies (at different stages of the process) and roughness amelioration
- Optimization of the annealing process: temperature/time (microstructure optimization)
- Hydrogen content (avoid hydrides formation)

Courtesy: A. Gallifa Terricabras, G. Rosaz

Very powerful tool that can be used for many large deformation processes for SRF fabrication

Regularly collecting data to improve the plots

Simulations and Characterization of Fabrication Processes for SRF

J. Święszek, A. G. Terricabras, D. Smakulska, M. Garlasché, SRF Workshop 2023

R&D and Numerical Simulations for SRF Fabrication Technologies

J. Święszek, A. G. Terricabras, B. R. Palenzuela, D. Smakulska, M. Garlasché, SRF Workshop 2022

Materials studies for SRF

A. G. Terricabras, M. Garlasché, B. R. Palenzuela, D. Smakulska,

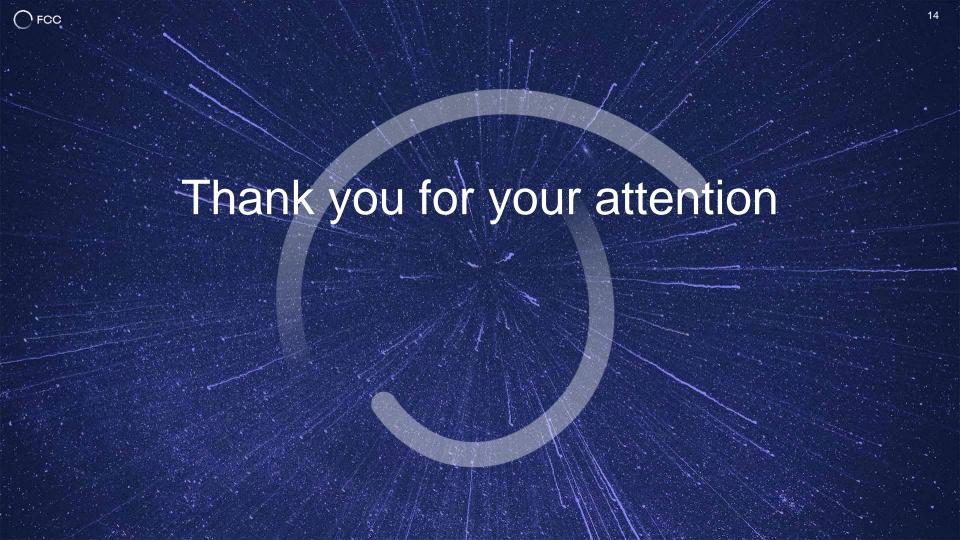
J. Święszek, SRF Workshop 2022

Presentation by Thomas

Conclusions

Abridged but coherent campaign ongoing, for defining manufacturing route for FCC series cavities

Seamless fabrication:


- 400 MHz bulk-machined will provide benchmark for downstream surface processes
- promising results from 1.3 GHz hydroforming campaign

Not forgetting **EB welding**!

- The EB deflector showed promising results on improving RF surface quality with respect to the old procedure (lower surface roughness, no polishing required)
- Experience gained during development for LHC spare cavities will be directly applicable to FCC
- Coming applications for LHC and FCC will be critical to determine if internal welding is a significant improvement for SRF performance

Fabrication R&D:

- CERN building know-how on main domains of interest for SRF mechanical fabrication
- ...advanced process simulations, material and failure characterization (SRFLD,..), impact of fabrication processes on SRF requirements (machining of RF surfaces, ...)

