

PRELIMINARY LAYOUTS AND DESIGNS FOR TWO OF THE FCC SURFACE SITES

Damian DOCKERY (Fermilab)
Andrew FEDEROWICZ (Fermilab)
Brian RUBIK (Fermilab)

Overview

CERN x FNAL Collaboration

- Background on Collaboration
 - FNAL Team, CERN Visit
- Scope of work
- SITE PA (Experiment Site)
- SITE PB (Technical Site)

The route to FCC Week 2023

APR JUNE 2022 2022

Draft agreement CERN & DOE FNAL project team on board

NOV

2022FNAL Visit
CERN

JAN 2023

Start of Conceptual Design Development

TODAY!

Fermilab

The FNAL Team

ISD Infrastructure Services DivisionEngineering Group

Fermilab's in-house Architectural/Engineering (A/E) firm. The Engineering Department provides expertise for conventional facility design and construction activities and directs outside A/E services.

Tracy Lundin

Senior Strategic Planner

Andrew Federowicz
Senior Architect

Brian Rubik

Damian Dockery

ISD/Deputy Director

Senior Structural Engineer

Jacquelyn Dragovich

BIM Manager / Architect

LBNF Long Baseline Neutrino Facility

Near Site Conventional Facilities

Thomas Hamernik

LBNF-NSCF Project Manager

Kennedy Hartsfield

LBNF-NSCF Deputy Project Manager

Fermilab Campus located 65km outside Chicago. Above: Aerial view of new buildings recently completed in the central campus surrounding Wilson Hall. Bottom Left: Integrated Engineering Research Building (IERC). Top Left: PIP-II Complex

CERN Trip: November 14-19th

- Total of 3 FNAL staff spent one week at CERN visiting LHC locations and proposed FCC sites with SCE team Tim Watson and Antoine Mayoux.
- The trip's intent and itinerary at a glance:
 - Meeting with CERN staff and FCC stakeholders to tour existing LHC facilities.
 - Gain better understanding of the CERN building types, construction methods, and unique challenges at LHC surface sites.

CERN Trip: November 14-19th

LHC Point 2 ALICE

LHC Point 5 – CMS

Site and Civil Engineering Requirements

LHC Point 8

Technical Infrastructure Technical Infra Coordination

Building 54

SCE overview of drafting and SCE overview of Revit Standards

Medical & Fire Station

Safety Requirements

Scope of Work

Deliverables: General Requirements

- Develop building design and site layout for 2 surface sites.
- These sites would be used a basis for estimating all 8 sites.
- Final Deliverable includes:
 - Preliminary Drawings w/specifications
 - Bill of Quantities
 - Architectural Visualizations
- FNAL deliverables are a collaboration with CERN that coordinates with SCE department strategy document describing industry standard contracting practices for large scale civil engineering projects.
- All renderings are conceptual and will be developed further as the study evolves

Surface sites PA and PB (FNAL deliverables)

Scope of Work

Deliverables: Preliminary Drawings

 Technical drawings for buildings developed using BIM software Autodesk Revit in accordance with SCE drafting standards

Plans: Grounds/Foundation/Basement/Roof

Sections: Building, Typical Wall

Elevations: North/South/East/West

Scope of Work

CESMIM4 Revised Civil Engineering Standard Method of Measurement

Deliverables: Bill of Quantities / Technical Report

- Based on Revit model output + some manual entry for quantities not able to be modeled
- Quantities of each material for all buildings (steel, concrete, insulation, paving, excavation, etc)
- Combined with Technical Report will allow for a cost estimate to be generated for each site (and extrapolated to other sites)
- Uses standards established by the Civil Engineering Standard Method of Measurement (CESMM4) by the Institution of Civil Engineers

Bill of Quantities: SD - Head Shaft Building					
Type Mark	Description	Туре	Material	Quantity	Unit
C1	STEEL COLUMN- PERFORATED WF	WFP 1500 x 400	Steel S235	31.0	t
C2	STEEL COLUMN	HEA 300	Steel S235	3.3	t
C5	STEEL COLUMN	HEB 300	Steel S235	4.1	t
C6	STEEL COLUMN	HEM 300	Steel S235	6.0	t
C9	CONCRETE COLUMN	500 x 500mm	Concrete - C30/37	6.4	m ³
C10	CONCRETE COLUMN	1000 x 2000mm	Concrete - C30/37	50.9	m ³
B1	STEEL BEAM	HEM 1000	Steel S235	40.7	t
B2	STEEL BEAM	HEA 200	Steel S235	20.7	t
B4	STEEL BEAM	HEB 220	Steel S235	3.1	t
B5	STEEL BEAM	HEB 800	Steel S235	22.1	t
B6	STEEL BEAM	UPN 200	Steel S235	4.6	t
В7	STEEL BEAM	UPN 300	Steel S235	9.6	t
B8	STEEL BEAM	HEA 100	Steel S235	4.6	t
S1	FLOOR- STEEL GRATING	Grating full diamond	Full diamond grating	247.0	m ²
S3	FLOOR- CONCRETE	Floor Concrete THK 300mm	Concrete - C30/37	994.0	m ²
S6	FLOOR- COLLABORATING- CONCRETE ON METAL DECK	CE-INT-Collaborating floor-120mm - Steel sheet 60	Concrete - C30/37	148.0	m ²
R1	ROOF- STEEL DECKING	Steel Roof	Steel Deck	1024.0	m ²
R2	ROOF- ROCKACIER INSULATION ASSEMBLY	Rockacier Insulation 200mm	Rockacier Insulation 200mm	1024.0	m ²
DP1	DOOR- SINGLE LEAF	900 x 2100h	Steel Door	4	nr
DP2	DOOR- DOUBLE LEAF	1800 x2100h	Steel Door	1	nr
DS2	DOOR- SECTIONAL-OVERHEAD	Sectional Door	Steel Door	2	nr
DS3	DOOR-OPENING AT SAS	INT-2000x2700h	Steel Door	1	nr
W7	WALL - EXT. INSUL METAL PANEL	Double-skinned steel cladding and 2 layers of insulation	Metal building envelope and insulation	1825.0	m ²
W1	WALL- CONCRETE	Wall Concrete THK 200mm	Concrete - C30/37	35.6	m^3
W2	WALL- CONCRETE	Wall Concrete THK 250mm	Concrete - C30/37	31.1	m ³
W3	WALL- CONCRETE	Wall Concrete THK 300mm	Concrete - C30/37	136.0	m ³
W5	WALL- WIRE MESH FENCE	Wire-mesh fence	Wire-mesh fence	185.0	m ²
F1	CONCRETE FOUNDATION WALL	350 x 350 x 350mm	Concrete - C30/37	35.0	m^3
F4	CONCRETE FOOTING	4000 x 2500 x 500mm	Concrete - C30/37	50.0	m^3
N/A	EXCAVATION	Excavation of soil	N/A	4501.7	m^3

Experimental Site (Ferney-Voltaire, France)

Existing Site: Local Area

- ~5.5 ha site located in France near semi-urban development
- 5km northeast of CERN campus
- 2km west of Geneva Airport
- Neighbors existing LHC surface site (Point 8)

Existing Site: Local Area

- ~5.5 ha site located in France near semi-urban development
- 5km northeast of CERN campus
- 2km west of Geneva Airport
- Neighbors existing LHC surface site (Point 8)

Existing Site: Constraints & Considerations

Constraints identified by CERN SCE:

- Located in semi urban area
- Ongoing construction projects
- Protected "Zone Humide" and compensation zone north of parcel
- Gas Pipeline south of parcel
- Required site access along east side of parcel

Considerations identified by CERN SCE:

- Maintain visibility from the adjacent road toward the Alps.
- Proposed building heights should be similar to existing structures in area

Proposed Site: Buildings

FCC-ee Buildings

ASSEMBLY HALL SX

Dim. Interior: 25m x 100m Hmax: 23m

HEAD SHAFT BUILDING

Dim. Interior: 20m x 40m Hmax: 15m

EXPERIMENT VENTILATION SUX

Dim. Interior: 20m x 15m Hmax: 15m

COOLING PLANT

EVAPORATOR TOWER REJECT WATER TREATMENT

Dim. Interior: 60m x 11m Hmax: 12m

BASEMENT BUILDING

Dim. Interior: 60m x 11m

Hmax: 12m

COMPRESSION STATION AND CONTROL ROOM

Dim. Interior: 25m x 17m

TUNNEL AND SERVICES AREA VENTILATION

> Dim. Interior: 40 x 15m Hmax: 15m

SHE PRESSURIZED HELIUM STORAGE

2 stacks of 3 bottles Each skid: 27m x 15m Hmax: 9m

SR POWER CONVERTERS BUILDING

Dim. Interior: 40m x 25m Hmax: 8m

SE ELECTRICAL BUILDING

Dim. Interior: 40m x 10m Hmax: 6m

ELECTRICAL SUBSTATION

-ENERGY STORAGE -POWER TRANSFORMERS -SVC HARMONIS FILTERS -ELECTRICAL PARC

Surface Dim: 3715 SQ M

SO STORAGE FOR RADIOACTIVE OBJECTS

Dim. Interior: 20m x 10m Hmax: 6.0m

SY ACCESS CONTROL BUILDING Dim. Interior: 26m x 29m

FCC-hh Buildings

SX (FCC-hh) ASSEMBLY HALL

Dim. Interior: 40m x 230m Hmax: 23m

SD (FCC-hh)

HEAD SHAFT BUILDING EXPANSION

Dim. Interior: 20m x 20m Hmax: 15m

SF (FCC-hh)

COOLING PLANT

EVAPORATOR TOWER REJECT WATER TREATMENT

Dim. Interior: 60m x 11m Hmax: 12m

BASEMENT BUILDING Dim. Interior: 60m x 11m Hmax: 12m

SH (FCC-hh)

COMPRESSION STATION AND CONTROL ROOM

WARM COMPRESSOR 1 SKID (MACHINE) Dim. Interior: 40m x 30m Hmax: 7m

WARM COMPRESSOR 2 SKID (EXPERIMENT) Dim. Interior: 24m x 10m Hmax: 10m

SU (FCC-hh) TUNNÈL AND SERVICES AREA

VENTILATION

Dim. Interior: 15m x 15m Hmax: 15m

SHE (FCC-hh)

LIQUID AND PRESSURÍZED HELIUM STORAGE

7 stacks of 6 bottles 6 QSDH EACH QSDH DIM: 30m x 6m Each skid: 27m x 15m Hmax: 9m Hmax: 6m

SLN (FCC-hh)

LIQUID AND PRESSURIZED NITROGEN STORAGE

Surface Dim: 12.1m x 4.2m

Hmax: 15m

Proposed Site: Layout

Responding to existing constraints and general considerations

FCC-ee structures shown in blue

FCC-hh structures shown in white

Proposed Site: Layout at FCC-ee

Proposed Site: Layout at FCC-hh

Proposed Site: Building Heights

SX Assembly Building: Structural System

- Reinforced concrete foundation: piles, grade beams, slab
- Steel superstructure and roof decking
- Perforated steel columns to allow for mechanical / electrical services to pass through
- Steel panel cladding with insulation
- Precast concrete shielding blocks over shaft opening
- Steel columns support a 120 tonne overhead crane

SX Assembly Building: Structural System

Thoughts/Considerations/Recommendations

Challenges:

- FCC-hh footprint expansion
 - Further study needed on site layout to verify ee and hh layouts will fit on parcel.
 - Need to further study synergies with LHC Point 8
 - Limited opportunity to increase building heights. Stacking building programs on multiple levels below grade could be an option.

Technical Site (Switzerland)

Existing Site: Overview

Constraints identified by CERN SCE:

- Located on Swiss rural land with expensive properties in surrounding area opposed new "industrial buildings"
- Protected forest (west), Protected stream (north), Buried gas pipeline (south)

Considerations identified by CERN SCE:

 Entrance to site located on the NW side of site. Road external to site will follow path of existing track.

Proposed Site: Buildings

FCC-ee Buildings

SY

ACCESS CONTROL BUILDING

Dim. Interior: 21m x 11m Hmax: 4m

SD

HEAD SHAFT BUILDING

Dim. Interior: 24m x 43m Hmax: 14m

SU

TUNNEL AND SERVICES AREA VENTILATION

Dim. Interior: 21m x 30m Hmax: 15m

SF

COOLING PLANT

Dim. Interior: 22m x 12m Hmax: 10m

SR

POWER CONVERTERS BUILDING

Dim. Interior: 40m x 25m Hmax: 8m

SE

ELECTRICAL BUILDING

Dim. Interior: 40m x 10m Hmax: 6m

SES

ELECTRICAL POWER BUILDING

Dim. Interior: 40m x 10m Hmax: 6m

ELECTRICAL SUBSTATION

-ENERGY STORAGE -POWER TRANSFORMERS -SVC HARMONIS FILTERS -ELECTRICAL PARC

Surface Dim: 3715 SQ M

SO

STORAGE FOR RADIOACTIVE OBJECTS

Dim. Interior: 20m x 10m Hmax: 6.2m

FCC-hh Buildings

SD (FCC-hh)

HEAD SHAFT BUILDING EXPANSION

Dim. Interior: 24m x 43m Hmax: 14m

SU (FCC-hh)

TUNNEL AND SERVICES AREA VENTILATION

Dim. Interior: 21m x 30m Hmax: 15m

SF (FCC-hh)

COOLING PLANT Dim. Interior: 22m x 12m

Hmax: 10m

SH (FCC-hh)
COMPRESSION STATION AND CONTROL ROOM

Dim. Interior: 20m x 30m Hmax: 10m

SHE (FCC-hh)

LIQUID AND PRESSURIZED HELIUM STORAGE

7 stacks of 6 bottles Each skid: 27m x 15m Hmax: 9m

12 QSDH EACH QSDH DIM: 30m x 6m Hmax: 6m

SLN (FCC-hh)

LIQUID AND PRESSURIZED HELIUM STORAGE

Surface Dim: 12.1m x 4.2m Hmax: 15m

+428.000 t/pavment

SITE PB

Proposed Site: Layout

Responding to existing constraints and general considerations

SY Access Building SY Access Control Building shown adjacent to the main site entrance

SY Access Building

Building Program

- 1 Main Entrance
- 2 Secondary Entrance
- 3 Lobby/Display Area
- 4 Control Room
- 5 Networking/Data Room
- 6 Medical First-aid Room
- 7 Conference Room (10 People)
- 8 Private Offices
- 9 Security Guard Office
- 10. Kitchenette/Break Room
- 11. Restrooms
- 12. Storage

Site PB / SF Cooling Plant

Proposed Structural System

- Reinforced concrete foundation: spread footings, slab on ground
- Reinforced concrete superstructure to help with sound attenuation
- Acoustic insulation panels on the interior walls to further reduce noise transmission to exterior
- Prefabricated concrete exterior wall panels with insulation
- Crane support beams for 3.5 tonne overhead crane
- Steel grating "false floor" to allow easy access to basement equipment level

Site PB / SF Cooling Plant

Proposed Structural System

Conclusion

- All deliverables (Revit models, preliminary drawings, bill of quantities, technical report) have been transferred to CERN
- CERN has contracted a cost estimating firm to take this information and generate cost and schedule estimates that will be incorporated into the overall FCC feasibility study
- We've thoroughly enjoyed this opportunity for continued collaboration with our CERN colleagues and hope to remain a part of this effort in the future
- Special thanks to our CERN colleagues: Tim Watson, Antoine Mayoux, Ludovic Barthelemy, Angel Navascues Cornago.

ISD Infrastructure Services Division