

Investigating next generation of accelerators: The KITTEN test facility for sustainable research infrastructures

TT-Prof. Dr.-Ing. Giovanni De Carne, Prof. Dr. Anke-Susanne Müller, Dr. Falastine Abusaif, M.Sc. Mashid Zadeh, Dr. Erik Bründermann, Dr. Julian Gethmann Karlsruhe Institute of Technology - 08/06/2023

KIT – The Research University in the Helmholtz Association www.elab2.kit.edu www.ibpt.kit.edu www.kit.edu

The starting point

High energy consumption

- Small accelerators (KARA) → 11GWh
- Large accelerators (FCC) → 1÷2 TWh

≈ Karlsruhe (300.000 inhabitants)

High power peak

■ Large difference between "stand-by" and "beam" operations → KARA 200kW vs. 650kW

High power supply quality required

- Stable voltage profile → Low inertia grids bring larger and more frequent disturbance
- Low harmonic content → power electronics may create resonances

11GWh ≈ 10.000 citizens city

08.06.2023

A joint venture between the accelerator **KARA** and the test-field **Energy Lab 2.0** to improve the energy use and power quality in large research infrastructures.

08.06.2023 TT-Prof.Dr.-Ing. Giovanni De Carne

The KITTEN Approach

Need to work on 4 different levels

- Physics / Component level: new materials and components targeting an efficiency increase
- Energy / Component level: integration and optimal operations of sustainable low carbon technologies (e.g., energy storage, renewables)
- Physics / System level: improve the efficiency operations in large research facilities using Al
- Energy / System level: increase the sustainability of large research facilities in the electrical system

Potential improvements in the energy solutions*

New highly-efficient and reliable components

- Low carbon technologies integration

- ·HTS-**Superconductors**
- Variable permanent hybrid magnets
- New cooling concepts
- SiC / GaN-based power electronics
- Optimal integration of ESS with RES
- Sector-coupled **Energy management**
- Green high power computing
- Geothermal as cooling source

Al-assisted research infrastructure load management

Flexibility provision to energy system

- Real time digital twin of accelerators
- Optimized energy consumption by Al
- Adjustable power demand

- 100% Renewable energy sources target
- Power demand flexibility
- New business models for flexibility provision

The Impact – 4 target groups

TG2 – System operators

Actors: Grid operators (TenneT), eng. companies

Expected impact:

 Power flexibility strategies for accelerators and computing centers (≥10-25%) for reduced consumption

TG1 – Large research facilities (current and future ones)

Actors: Particle accelerators, data centers

Expected impact:

- Electricity costs reduction (≥10-25%)
- 100% renewable energy supply
- Fully digitalized infrastructure

TG3 – Technology manufacturers

Actors: Manufacturers, software and Al companies

Expected impact:

 Improved magnets, power electronics, (TRL 1-3 → 4-6, -20% consumption)

TG4 – General Society

Actors: medical facilities, schools, public buildings, computing centers

Expected impact:

- Higher awareness of sustainable energy solutions
- Training of public managers by means of demonstrators, schools, and workshops.

- Reduction of operation costs for public (hospitals, schools) and private (industry) facilities
- Open-access data & Benchmark results

KITTEN next accelerators concept

Goal

Develop solutions for stable, efficient and safe operations of accelerators (and not only!)

How to achieve it?

- KARA → large field measurement availability
- Data-drive models of KARA → IBPT experience is important!
- Time-efficient real time modelling → EL2.0 experience is important!
- Control feedback to KARA

Expected outcome

Digital Twin of KARA to be employed for analyzing, developing and testing future energy solutions for accelerators

Unique selling point: Validation by means of Power Hardware In the Loop

- Digital real time simulator: simulate the KARA electrical grid
- Power amplifier: reproduce a point of the simulated grid in lab (e.g., measured voltage)
- Hardware under Test: this is the technology, which performances we want to test

Cost analysis for KARA – a first analysis

Speicherring

Kältezentrale

Geb. 348 allg.

Klima&Lüftung

Base Load

Around 40% of the base load of 7GWh is related to labs and beamlines. 8% for the insertion devices.

Around 40% goes for the building power and the cooling system.

The storage ring and pumps take only 8% of the base load.

Beamlines energy consumption – 14.09.2022

Gesamtleistung KARA

Einzelmessungen

Strand scheme of main ring and Beamlines

Active Power Profile of main ring

2023-03-01 10:00:00 to 10:05:15

13 08.06.2023 TT-Prof.Dr.-Ing. Giovanni De Carne

Voltage Profile of main ring

2023-03-01 10:00:00 to 10:05:15

08.06.2023 TT-Prof.Dr.-Ing. Giovanni De Carne

Energy storage solutions for accelerators

Long-term (>12 hours) storage solutions

Seasonal

energy storage

solutions

15

Fast dynamics solutions

Medium-term solutions

KITTEN: a solution for energy management in accelerators

- Large set of expertise in the accelerators' area
 - Energy management, power electronics, technology development and testing
- Availability of large-scale testing infrastructure
 - KARA → test facility for accelerator technologies and study benchmark
 - Energy Lab 2.0 → test facility for high power energy solutions
- Collaboration at national and international level
 - BMBF Project ACCESS on power quality in accelerator
 - Horizon Europe on Sustainable and Efficient Accelerators (ALBA, CERN, DESY, HZB, MAX IV)

THANK YOU Questions?

HIRING!!!

Looking for talented

Looking for talented

PhDs and Post-docs

PhDs and Post-docic!

to work on the topic!

TT.-Prof. Dr.-Ing. Giovanni De Carne

Head of "Real Time System Integration" group Helmholtz young investigator group leader

Karlsruhe Institute of Technology

Institute for Technical Physics (ITEP)

Phone: +49 721 608-25924

Email: giovanni.carne@kit.edu

www.itep.kit.edu