

FCC-ee collimation studies

A. Abramov, K. André, G. Broggi, R. Bruce, M. Hofer, S. Redaelli

FCC week 2023, London, United Kingdom – 06/06/2023

Many thanks to:

M. Boscolo, H. Burkhardt, F. Carlier, A. Ciarma, Y. Dutheil, P. Hunchak, G. Iadarola, A. Lechner, G. Lerner, L. Nevay, M. Moudgalya, K. Oide, A. Perillo Marcone, T. Pieloni, R. Ramjiawan, T. Raubenheimer, S. White, F. Zimmermann

Collimation for the FCC-ee

- The FCC-ee is the FCC first stage e+e- collider
 - 90.7 km circumference, tunnel compatible with the FCC-hh
 - 4 beam operation modes, optimized for production of different particles:
 Z (45.6 GeV), W (80 GeV), H (120 GeV), tt (182.5 GeV)

The FCC-ee presents unique challenges

- The stored beam energy reaches 17.8 MJ for the 45.6 GeV (Z) mode, which is comparable to heavy-ion operation at the LHC
- Such beams are highly destructive: a collimation system is required
- The main roles of the collimation system are:
 - Protect the equipment from unavoidable losses
 - Reduce the backgrounds in the experiments
- Two types of collimation foreseen for the FCC-ee:
 - The beam halo (global) collimation
 - Synchrotron Radiation (SR) collimation near the IPs

Comparison of lepton colliders

Damage to coated collimator jaw due to accidental beam loss in the SuperKEKB – T. Ishibashi (talk)

FCC-ee collimation system

- Dedicated halo collimation system in PF
 - Two-stage betatron and off-momentum collimation systems in one insertion
 - Ensure protection of the aperture bottlenecks in different conditions
 - Dedicated collimation optics (M. Hofer)
 - Collimator design for cleaning performance G. Broggi, FCC week 23 talk
- Synchrotron radiation collimators around the IPs

06/06/2023

6 collimators and 2 masks upstream of the IPs K. André, FCC week 23 talk

 Designed to reduce detector backgrounds and power loads in the inner beampipe due to photon losses

(Exp.)

IPG

(RF)

(RF)

betatron

 $L_{LSS} = 2.1 \text{ km}$

(Exp.)

 $L_{arc} = 9.6 \text{ km}$

 $L_{SSS} = 1.4 \text{ km} \text{ (Exp.)}$

Collimation

insertion

off-momentum

M. Hofer

(Inj./Extr.

FCC-ee aperture

- The aperture bottlenecks are in the experimental interaction regions (IRs)
- The bottlenecks must be protected
 - The final focus quadrupoles are superconducting and there is a risk of quenches
 - The detector is sensitive to backgrounds from beam losses
 - The SR collimators and masks are not robust to large direct beam impacts, can also produce backgrounds
 - The collimation margins are tight

Beam stay-clear (**BSC**) is the distance from the beam to the aperture in units of beam size

The momentum acceptance is the δ = **A** / **D**, where **A** is mechanical aperture and **D** is dispersion

Aperture bottlenecks for the different operating modes

FCC-ee beam losses

- The FCC-ee will operate in a unique regime
 - Electron / positron beam dynamics and beam-matter interactions
 - Stored beam energy exceeding material damage limits
 - Superconducting final focus quadrupoles, crab sextupoles, and RF cavities
 - Must study the beam loss processes and define the ones to protect against (H. Burkhardt, talk)
 - Must study the equipment loss tolerances, for both regular and accidental losses
- Important loss scenarios for particle tracking studies:
 - Beam halo Current studies
 - Top-up injection
 - Spent beam due to collision processes (Beamstrahlung, Bhabha scattering)
 - Beam tails from Touschek scattering and beam-gas interactions
 - Failure modes (injection failures, asynchronous dump, others)
 - The SuperKEKB fast beam losses should, if possible, be understood and modelled

Input required to set up models

FCC-ee collimation simulations

- The FCC-ee presents unique challenges for collimation simulations:
 - Synchrotron radiation and magnet strength adjustment (tapering) to compensate it
 - Complex beam dynamics strong sextupoles in lattice, strong beam-beam effects (Beamstrahlung)
 - Detailed aperture and collimator geometry modelling
 - Electron/positron beam particle-matter interactions
 - Large accelerator 90+ km beamline
- Xsuite + BDSIM (Geant4) coupling
 - Developed for the collimation simulations in the FCC <u>IPAC'22 paper</u>
 - Benchmarked against other codes for FCC-ee MAD-X, pyAT, SixTrack-FLUKA coupling
 - Xsuite-FLUKA coupling will be available soon (LHC collimation and FLUKA teams)
 - New features continuously added

Current study: beam halo losses

- "Generic beam halo" beam loss scenario:
 - Specify a minimum beam lifetime that must be sustained during normal operation
 - Preliminary specification of a 5 minute lifetime
 - Assume a slow loss process halo particles always intercepted by the primary collimators
 - The loss process is not simulated, all particles start impacting a collimator
 - Track the particles scattered out from the collimator and record losses on the aperture
 - Currently using 1 µm impact parameter as standard
 - Selected to give a conservative performance estimate
 - Impact parameter scans ongoing G. Broggi, FCC week 23 talk

a = angle of incidence

b = impact parameter

d = distance traversed

Beam halo losses for the Z mode

- The Z mode is the current focus (Beam 1, 45.6 GeV, e⁺), 17.8 MJ stored beam energy
- The 5 minute beam lifetime → total loss power 59.2 kW
- Radiation and tapering included
- 3 cases consiered:
 - Horizontal betatron losses (B1H)
 - Vertical betatron losses (B1V)
 - Off-momentum losses δ < 0 (B1-dp)

For the off-momentum case, using a tilted collimator, aligned

to the beam divergence

Parallel jaw and tilted collimator schematic

Туре	Plane	Material	Length [m]	Gap $[\sigma]$
β prim.	Н	MoGr	0.4	11.0
β sec.	H	Mo	0.3	13.0
β prim.	V	MoGr	0.4	65.0
β sec.	V	Mo	0.3	75.5
δ prim.	H	MoGr	0.4	29.0
δ sec.	H	Mo	0.3	32.0
SR BWL	H	\mathbf{W}	0.1	18.6
SR QC3	H	\mathbf{W}	0.1	16.7
SR QT1	H	\mathbf{W}	0.1	14.6
SR QT1	V	\mathbf{W}	0.1	196.4
SR QC2	H	\mathbf{W}	0.1	14.2
SR QC2	V	W	0.1	154.2

Collimator parameter and settings for the Z mode

Total loss power: 59.2 kW

Z-mode betatron halo loss maps

Beam halo losses for the Z mode

- The beam collimation system shows significant loss suppression
 - More than 99.96% of losses contained within the collimation insertion PF, only up to 1.7 W reaching any IR
 - Tilted primary collimators are essential for the performance at the Z mode
 - Energy deposition studies and thermomechanical studies are required for the collimators and most exposed magnets
- Collaborative studies ongoing
 - Impedance and collective effects
 M. Migliorati, FCC week 23 talk
 - IR losses and collimator parameter optimization <u>G. Broggi, FCC week 23 talk</u>
 - Tracking of the collimation losses in the detector <u>A. Ciarma</u>, <u>FCC week 23 talk</u>
 - First collimator energy deposition <u>G. Lerner, talk</u> and thermomechanical studies R. Andrade, talk

Z-mode betatron halo loss maps for selected regions

PJ, experimental insertion

Z mode losses on SR collimators

06/06/2023

- The SR collimators intercept losses for all cases
 - Highest load on BWL and C3 horizontal collimators, up to 0.4 W
 - Lowest load on the vertical T1 collimator

Failure beam loss scenarios

- Fast beam losses due to failures are important for the design of the collimation system
 - SuperKEKB has experiences sudden beam loss, up to 80% intensity loss over 2 turns (T. Ishibashi, talk)
 - Such events have damaged collimators, and the cause is not well understood
- Fast beam losses in the FCC-ee:
 - Accidental beam loss scenarios and their likelihood must be studied in detail to devise a protection strategy
 - Injection failures and asynchronous beam dumps are likely failures that must be modelled in detail
 - The set of failure modes to protect against could drive significant changes in the collimation design
 - Special solutions may be required to handle such losses
 - As a worst-case, sacrificial collimators can be considered

Beam current during a sudden beam loss in the SuperKEKB – T. Ishibashi (talk)

Collimator damage in SuperKEKB https://doi.org/10.1103/PhysRevAccelBeams.23.053501

Moving forward: a new FCC-ee baseline

- There have been several major changes in the FCC-ee design recently
 - Details in <u>K. Oide, FCC week 23 talk</u>
 - Updated ring layout (PA31-3), reduced circumference (90.7 km)
 - A single RF insertion used for all the operating modes
 - Beam pipe aperture reduction in the arcs (35 → 30 mm)
 - Altered IR geometry and optics
 - New beam parameter set

- Ongoing effort to set up collimation for the new baseline
 - Integrating the collimation insertion into the new ring optics
 - Running aperture checks and preparing halo collimation settings
 - Updating the SR collimator configuration

New collimation insertion optics

- Preliminary collimation optics for the new baseline:
 - Developed by M. Hofer
 - Split-function betatron and off-momentum collimation
 - Based on a triple double doublet scheme
 - Designed to maintain optimal collimator phase advance at acceptable mechanical gaps

preliminary

	TCP [σ]	TCS [σ]
Hor.	9	11
Ver.	70	80
Mom.	16	19

Beam halo collimator settings

Name	Gap [mm]	δ _{cut} [%]
TCP.H.B1	8.7	46.1
TCP.V.B1	2.2	-
TCS.H1.B1	2.5	4.4
TCS.V1.B1	2.7	-
TCS.H2.B1	3.2	5.0
TCS.V2.B1	2.7	-
TCP.HP.B1	3.6	1.5
TCS.HP1.B1	6.2	2.8
TCS.HP2.B1	4.3	1.8

V23, tridodo_565 collimation optics https://gitlab.cern.ch/mihofer/fcc-ee-collimation-lattice

New collimation optics

- The new optics is integrated with the ring optics
- The DA and momentum acceptance are improved relative the current collimation optics
 - The dynamic aperture and the momentum acceptance are improved
 - Further tuning and optimization are possible
 - This will help in performing studies with effects like beam-beam, where the beam tails need to be tracked long-term

DA and momentum acceptance with radiation and tapering

https://gitlab.cern.ch/mihofer/fcc-ee-collimation-lattice

Collimation performance

- Running simulations with the new configuration
 - Shorter primary collimators used 0.4 m → 0.25 m MoGr see G. Broggi, FCC Week 23 talk
 - Radiation and tapering enabled, no tilt applied
 - Studied the horizontal and vertical betatron cases (B1H, B1V)
- Similar performance to the current baseline
 - Losses on the final focus quadrupoles are overall lower
 - Higher SR collimator losses for B1V

Collimation performance

Losses in the collimation insertion PF

- The loss pattern is different due to the new layout
- Smoother collimator hierarchy
- Lower losses over the auxiliary beam crossing
- Lower losses on the offmomentum collimation

Promising results so far

- Further checks ongoing
- The impedance must be evaluated

FCC-ee collimation summary

- Studies of beam losses and collimation for the FCC-ee
 - First collimation system design available, including beam halo and SR collimators
 - Simulations of beam loss scenarios ongoing
 - Beam halo losses studied for the most critical Z mode, no show-stoppers identified
 - Collaboration with the MDI, impedance, engineering, FLUKA studies team
 - Input on equipment loss tolerances needed to optimize performance
 - Studies ongoing on an updated collimation system design
 - The goal is a refined set of specifications before the autumn

Next steps

- Study other beam loss scenarios failure scenarios, spent beam, top-up injection
- Obtain input for the equipment loss tolerances superconducting magnets, collimators, other
 - Energy deposition studies required for magnets, collimators, and masks
 - Tolerance of the detectors to backgrounds required
- Study all beam modes

Thank you!

