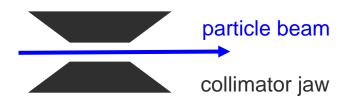


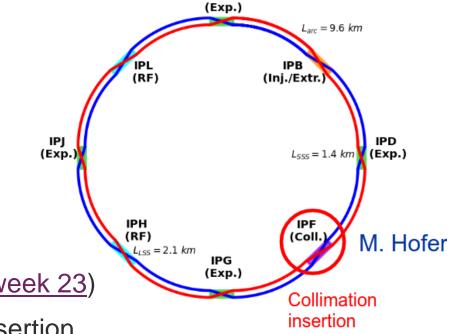
Beam Losses in the MDI

G. Broggi ^{1,2,3}, A. Abramov ², M. Boscolo ³, R. Bruce ²

- ¹ Sapienza University of Rome, Rome, Italy
- ² CERN, Meyrin, Switzerland
- ³ INFN-LNF, Frascati, Italy

FCC week 2023 – London, United Kingdom

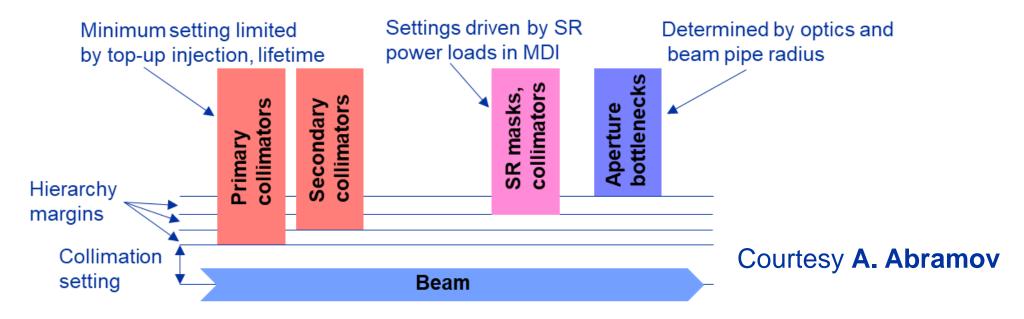

Joint FCC-ee Accelerator and PED session: Machine Detector Interface (II) - 06/06/2023 Many thanks for discussions and input to:


A. Lechner, M. Hofer, M. Migliorati, K. Oide, A. Perillo-Marcone, S. Redaelli, F. Zimmerman

FCC-ee: collimation system requirements

- FCC-ee will have an unprecedented stored beam energy for a lepton collider
 - Up to 17.8 MJ (Z mode) → highly destructive beams
- Collimation system indispensable
 - Reduce the background in the experiments
 - Protect the machine from unavoidable losses

- Dedicated halo collimation system in PF (A. Abramov FCC week 23)
 - > Two-stage betatron and off-momentum collimation in one insertion
 - > First collimator design for beam cleaning performance (G.Broggi Master's thesis)
 - Primary collimators (TCPs): MoGr 33 cm
 - Secondary collimators (TCSs): Mo 30 cm


Further optimization studies ongoing (materials, length)

Synchrotron radiation collimators around the Interaction Points (IPs) (K. André – FCC week 23)

FCC-ee aperture bottlenecks

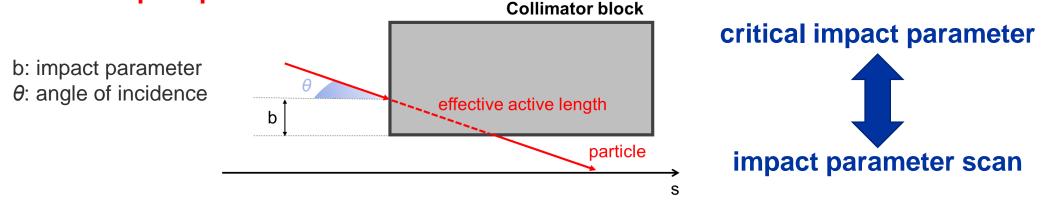
- The aperture bottlenecks are in the experimental interaction regions (IRs)
- The bottlenecks must be protected → collimation system
 - The final focusing quadrupoles are superconducting: risk of quenches!
 - The detectors are sensitive to backgrounds from beam losses
 - The SR collimators and masks are not robust to large direct beam impacts and they can also produce backgrounds

Goals

- Evaluate the halo collimation system performance for beam loss cleaning
 - ⇔ evaluate beam losses in the Machine Detector Interface (MDI)
- Study beam dynamics aspects affecting beam losses in the MDI
- Optimization of the halo collimator design parameters
- Study possible loss mitigation strategies

In this talk

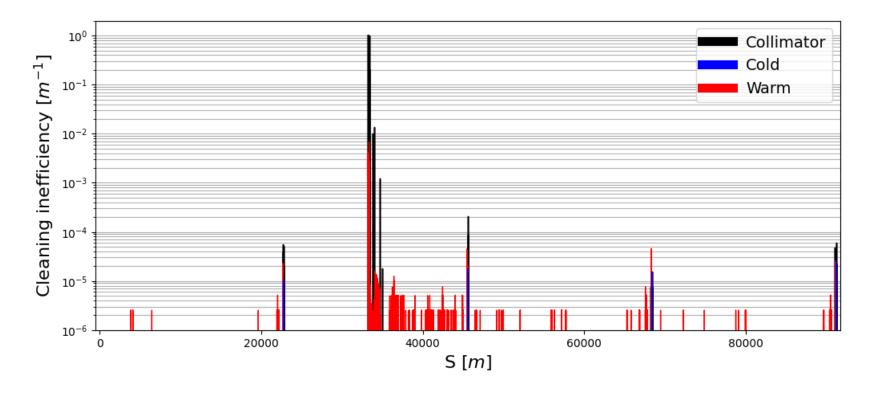
- - > FCC-ee 4IP layout (Z and ttbar) generic beam halo loss scenario
- Collimator design optimization through a parametric scan of the primary collimator length
 - FCC-ee 4IP layout (Z and ttbar)
- Impact parameter scan for different scenarios
 - > FCC-ee 4IP layout (Z and ttbar)
 - Without and with radiation and tapering
 - Without and with collimators aligned to the beam envelope (loss mitigation strategy)



SIMULATION SETUP

Case study: beam halo losses

- Tracking simulations (Xtrack-BDSIM) to evaluate beam losses in the MDI
- Generic halo beam loss scenario
 - Simulation starts with halo particles impacting a primary collimator at a given impact parameter
 - The impact parameter affects the collimator active length
 - To get a conservative performance estimate: the particles impact the collimator at the critical impact parameter



The particles scattered out from the collimator are tracked, and the losses on the aperture are recorded (loss maps)

Example: Z mode betatron halo loss map

- FCC-ee 4IP layout, Z operation mode (B1, 45.6 GeV positrons), 17.8 MJ stored beam energy
- Halo particles (5x10⁶) impacting the horizontal primary collimator TCP.H.B1
- Impact parameter $b = 1 \mu m$ (standard used in the studies so far)
- Particles scattered out from TCP.H.B1 tracked for 700 turns
- Synchrotron radiation emission and lattice tapering

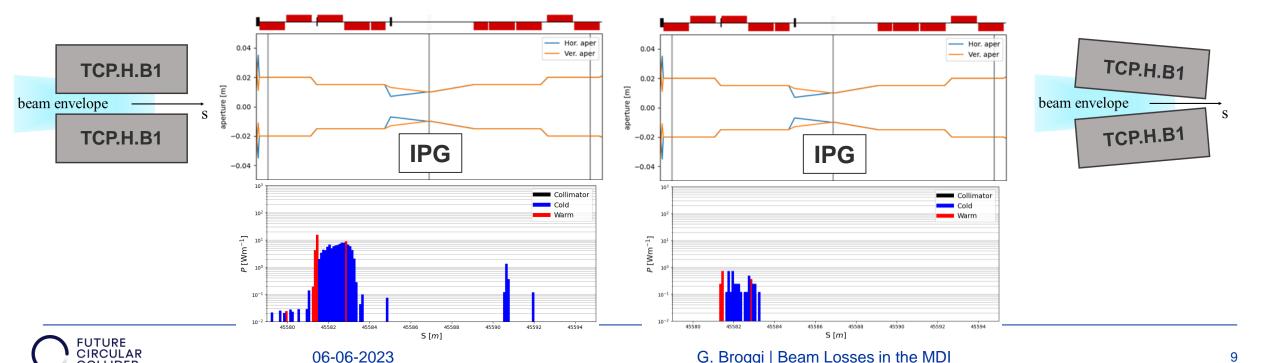
PARAMETRIC SCAN OF THE PRIMARY COLLIMATOR LENGTH

Parametric scan of the TCP length: motivation

- Current TCP length relies on LEP collimation experience (G. von Holtey article)
 - Two radiation-length primary collimators (TCP)
- Primary collimators give a significant contribution to the global RF impedance
 - They are the collimators closest to the circulating beam
 - Because of robustness requirements for the FCC-ee, need to consider low-Z materials with a lower electrical conductivity (e.g., MoGr)
 - Low-Z translates into high radiation length; therefore, if the design criterion requires that a certain number of radiation lengths is needed, this could lead to long collimators
- Parametric scan of the TCP length performed with the aim of observing the behaviour of the halo collimation system performance as a function of the primary collimator length

Goal

➤ reduce as much as possible the TCP length without significantly worsening the cleaning performance
→ without significantly increasing beam losses in the MDI

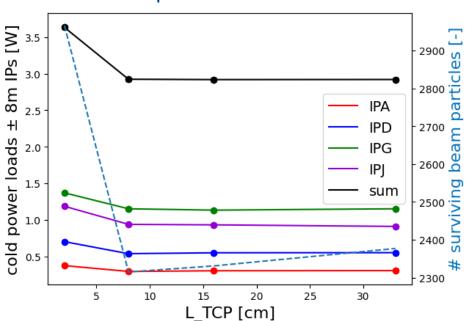


Parametric scan of the TCP length

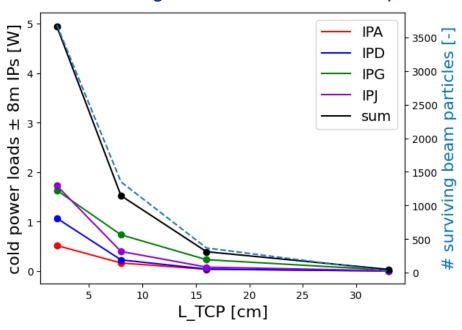
- Xtrack-BDSIM simulation setup used to perform this study
- FCC-ee 4IP layout (Z and ttbar operation modes)

- s range considered most critical for MDI losses (region in between the SR collimators closest to the IPs)
- Figure of merit: cold power loads(± 8 m from the IPs) (i.e., power loads in the final focusing quads)
- Two scenarios TCP.H.B1 parallel to the closed orbit

 TCP.H.B1 aligned to the beam envelope (loss mitigation strategy) "tilted TCP.H.B1"



Parametric scan of the TCP length (ttbar mode)

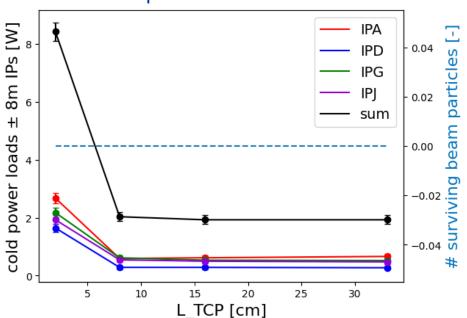

To compute the cold power loads in the MDI, 5 min beam lifetime assumed.

Impact parameter b=1 µm

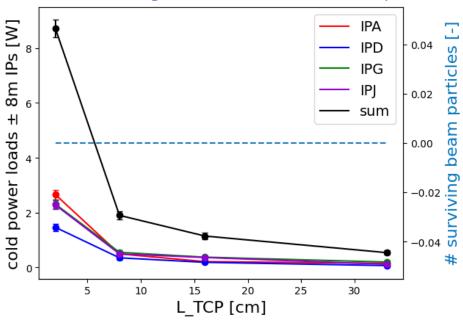
TCP.H.B1 parallel to the closed orbit

TCP.H.B1 aligned to the beam envelope

- Untilted TCP.H.B1: NO power loads increase till L_{TCP} ≈ 2 cm
- Tilting TCP.H.B1: lower power loads (tilt angle = 45.68 μrad)
 - > Power loads in the MDI increase exponentially as L_{TCP} is decreased
 - * 2 cm is roughly the distance traversed by primary particles through an untilted collimator jaw (ttbar mode)



Parametric scan of the TCP length (Z mode)


To compute the cold power loads in the MDI, 5 min beam lifetime assumed.

Impact parameter b=1 µm

TCP.H.B1 aligned to the beam envelope

- Untilted TCP.H.B1: NO power loads increase till L_{TCP} = 8 cm
- Tilting TCP.H.B1: NO significant reduction of the power loads (tilt angle = 9.69 µrad)
 - > Power loads in the MDI increase exponentially as L_{TCP} is decreased
 - * 8 cm is roughly the distance traversed by primary particles through an untilted collimator jaw (Z mode)

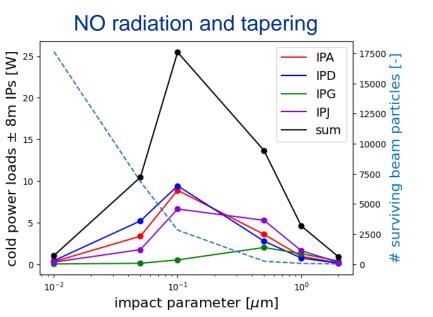
IMPACT PARAMETER SCAN

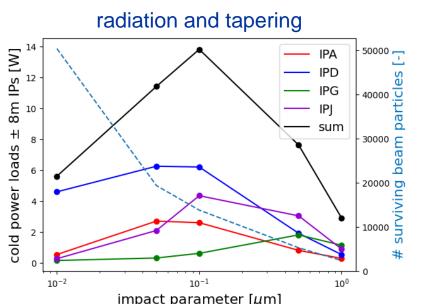
Impact parameter scan

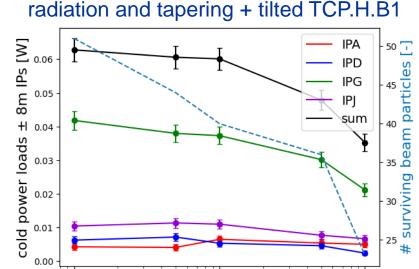
- Scan to determine the loss cleaning performance as a function of the impact parameter
- FCC-ee 4IP layout

 ttbar operation mode(B1, 182.5 GeV positrons, 0.3 MJ stored beam energy)

 Z operation mode (B1, 45 GeV positrons, 17.8 MJ stored beam energy)
- Nominal primary collimator length (33 cm)
- Different scenarios examined:


	SR emission	lattice tapering	tilted TCP.H.B1
NO R&T	×	×	×
R&T			×
R&T + tilted TCP.H.B1			


• Figure of merit: cold power loads ± 8 m from the IPs (i.e., power loads in the final focusing quads)



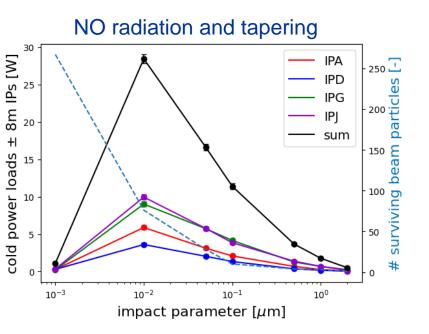
Impact parameter scan (ttbar mode)

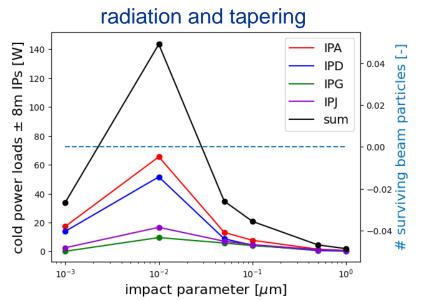
Nominal TCP length L_{TCP}=33 cm

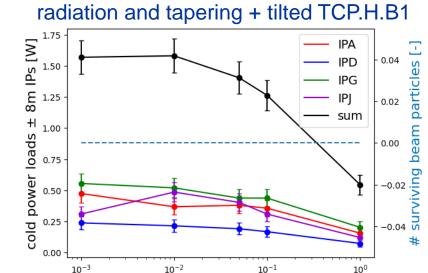
 10^{-1}

impact parameter [μm]

 10^{-2}

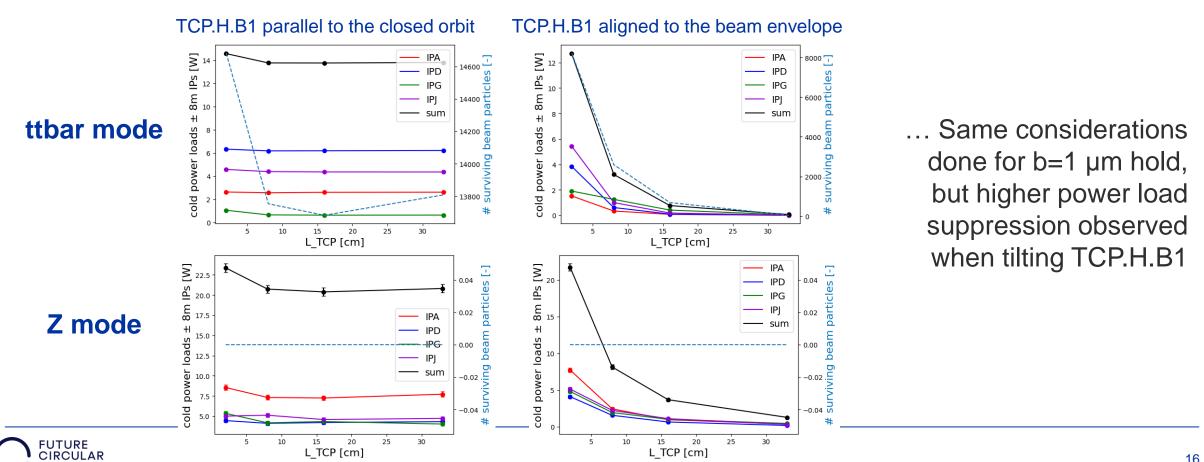

- Critical impact parameter b_{crit} = 0.1 μm
 - With this impact parameter, power loads in the MDI are a factor of ≈5 higher
- Tilting TCP.H.B1: power loads suppression (≈2 orders of magnitude) for all impact parameters
 - NO clear critical impact parameter b_{crit}
- With radiation and tapering, lower power loads in the MDI
 - > Likely due to a reduction of aperture losses because of radiation damping




10⁰

Impact parameter scan (Z mode)

Nominal TCP length L_{TCP}=33 cm


impact parameter [μ m]

- Critical impact parameter b_{crit} = 10 nm (surface roughness should be considered !)
 - > With this impact parameter, power loads in the MDI are 2 orders of magnitude higher
- Tilting TCP.H.B1: power loads suppression (2 orders of magnitude) at b=b_{crit}
 - > However, no significant improvements are observed for higher impact parameters
 - > NO clear critical impact parameter b_{crit}
- With radiation and tapering → higher power loads in the MDI (and no surviving particles)
 - > Likely due to an increase of aperture losses because of insufficient dynamic aperture (DA)

Parametric scan of the TCP length at b=b_{crit}

- To get **conservative power load estimates**, **b=b**_{crit} should be considered
 - However, further checks on beam dynamics and modelling techniques should be carried out before selecting a new standard impact parameter for future studies
- Tentatively repeated the studies for shorter TCP considering a smaller impact parameter b=0.1 µm

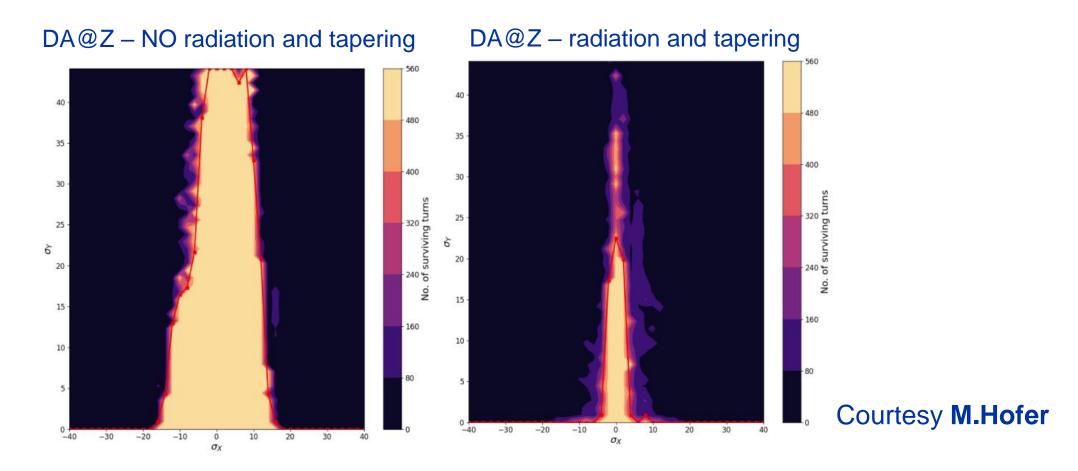
SUMMARY AND NEXT STEPS

Summary

- Beam losses in the MDI been evaluated for FCC-ee 4IP lattice (Z and tt)
- A parametric study of the primary collimator length suggests that we can tentatively shorten the TCP (25-30 cm) without significantly increasing power loads in the MDI
- An **impact parameter scan** identified the **critical impact parameters in different scenarios** (but further studies needed before selecting a new standard impact parameter for future studies)
- The collimator jaws need to be aligned to the beam envelope to significantly suppress
 (two orders of magnitude) the power loads in the MDI

Next steps

- Update the studies to the latest available lattice (with improved DA)
- Check if we can further shorten the TCP power load limits needed
- Further optimize the collimator design (alternative materials, parametric scan of secondary collimator length, local TCT-like collimators? ...)
- Sensitivity study of the collimator tilt angle
- Iterate the collimator design with the engineering, impedance and FLUKA teams


Thank you!

Backup: dynamic aperture at Z

06-06-2023

Full FCC-ee 4IP lattice (Z mode) - collimation insertion optics included

Inclusion of collimation insertion optics has a detrimental effect on DA (Z, radiation and tapering)

