Comparison of Harmonic Spin Matching Schemes using Orbit Bumps in the FCC-ee

Y. Wu ${ }^{1}$, D. P. Barber ${ }^{2}$, F. Carlier ${ }^{3}$, L. van Riesen-Haupt ${ }^{1}$, E. Gianfelice-Wendt ${ }^{4}$, T. Pieloni ${ }^{1}$

${ }^{1}$ École Polytechnique Fédérale de Lausanne (EPFL)
${ }^{2}$ Deutsches Elektronen Synchrotron (DESY)
${ }^{3}$ European Organization for Nuclear Research (CERN)
${ }^{4}$ Fermilab

Energy calibration in FCC-ee

- FCC-ee will operate on 4 centre-of-mass energies Z^{0} bosons $(91 \mathrm{GeV})$, WW pairs $(160 \mathrm{GeV})$, Higgs bosons $(240 \mathrm{GeV})$ and top quark pairs ($350-365 \mathrm{GeV}$)
- High-precision centre-of-mass energy calibration
- basis for precise measurements of the standard model particle properties
- make it possible for the new rare process detection
- precise measurements in FCC-ee will contribute to the measurements in FCC-hh

The current precision targets for the energy calibration: 4 keV at Z mass and 100 keV at W mass
the most promising way to achieve this target: resonant depolarization

[^0]
Objectives

Ensure a sufficient spin polarization level (at least 5 - 10\%)

1. Estimate the achievable polarization under various lattice conditions e.g. misalignments+field errors
2. Use special structure to improve polarization e.g. closed orbit bumps

Thomas-BMT equation

$$
\frac{\mathrm{d} \vec{S}}{\mathrm{~d} t}=\vec{\Omega}_{\mathrm{BMT}} \times \vec{S}
$$

$\hat{n}_{0}(s)$: one-turn periodic solution of the T-BMT equation on the closed orbit the precession axis for arbitrary spins on the closed orbit

- Spins on the closed orbit precess around \hat{n}_{0} for ν_{0} turns in every revolution
- ν_{0} : closed orbit spin tune
- $\nu_{0}=a \gamma$ in the perfectly aligned flat ring without solenoids
- $\nu_{0} \neq a \gamma$ in general
- Sokolov-Ternov (ST) effect
- spin-flip during synchrotron radiation emission
- e-/e+ beams are gradually polarized in the rings
- $P_{S T} \approx 92.4 \%$ in a uniform field, less than $P_{S T}$ in non-uniform fields
- Radiative depolarization
- spin diffusion: a large number of stochastic photon emissions result in a random walk of $|\hat{S} \cdot \hat{n}|$.
- total polarization level of a beam is decreased

ST effect + radiative depolarization \Rightarrow equilibrium polarization

Effective model for error seeds creation

- Use an effective model to simulate residual orbits after lattice correction
- Random small errors generated from truncated Gaussian distributions (truncated at 2.5σ)

Type	$\sigma_{\Delta \mathrm{X}}$ (nm)	$\sigma_{\Delta \mathrm{Y}}$ (nm)	$\sigma_{\Delta \mathrm{Z}}$ (nm)	$\sigma_{\Delta \mathrm{PSI}}$ $(\mu \mathrm{rad})$	$\sigma_{\Delta \text { THETA }}$ $(\mu \mathrm{rad})$	$\sigma_{\Delta \mathrm{PHI}}$ $(\mu \mathrm{rad})$
Arc quadrupole	120	120	120	2	2	2
Arc sextupole	120	120	120	2	2	2
Dipoles	120	120	120	2	0	0
IR quadrupole	120	120	120	2	2	2
IR sextupole	120	120	120	2	2	2

Energy scan with multiple error seeds

Setting 1

$$
\begin{gathered}
\sigma=120 \mathrm{~nm} \text { for } \mathrm{x}, \mathrm{y}, \mathrm{z} \text { misalignments } \\
\sigma=2 \mu \mathrm{rad} \text { for angular deviations }
\end{gathered}
$$

First order energy scan showing equilibrium polarization levels near Z energy

Energy scan with multiple error seeds

Setting 2

$$
\begin{gathered}
\sigma=200 \mathrm{~nm} \text { for } \mathrm{x}, \mathrm{y}, \mathrm{z} \text { misalignments } \\
\sigma=2 \mu \mathrm{rad} \text { for angular deviations }
\end{gathered}
$$

Harmonic spin matching (HSM)

Conventional lattice correction + harmonic spin matching

- Perfectly aligned flat ring $\rightarrow \hat{n}_{0}(s)$ vertical \rightarrow small spin diffusion
- Misaligned ring $\rightarrow \hat{n}_{0}(s)$ not vertical \rightarrow stronger spin diffusion
- Random vertical quadrupole misalignments are difficult to control
- HSM: use multiple vertical orbit correctors to create an additional controllable \hat{n}_{0} tilt and reduce $\left(\delta \hat{n}_{0}\right)_{\mathrm{rms}} \rightarrow$ elevate polarization
- Use closed vertical bumps to avoid disturbing the orbits outside bumps

[^1]
Harmonic bump composition

1st corrector: give a vertical kick
2nd corrector: kick y back to initial value at the 3rd corrector
3rd corrector: kick y^{\prime} back to initial value
Kicks of 2nd and 3rd correctors are adjusted to make the bump CLOSED one independent variable for each bump

a schematic of a bump in HERA*

[^2]
Three correction schemes

1. HERA formalism (used in HERA)
D. P. Barber, et al. A general harmonic spin matching formalism for the suppression of depolarisation caused by closed orbit distortion in electron storage rings. No.
DESY-85-044. DESY, 1985.
2. Rossmanith-Schmidt scheme (used in PETRA)
R. Rossmanith and R. Schmidt, Compensation of depolarizing effects in electron-positron storage rings. Nuclear Instruments and Methods in Physics Research Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment 236.2 (1985): 231-248.
3. LEP method (Deterministic) (used in LEP)
R. W. Assmann, Optimierung der transversalen Spin-Polarisation im LEP-Speicherring und Anwendung für Präzisionsmessungen am Z-Boson. Diss. Munich U., 1994.

HERA formalism

$$
\delta \hat{n}_{0}=\alpha \hat{m}+\beta \hat{l}
$$

$\hat{I}(s), \hat{n}_{0}(s), \hat{m}(s)$ are periodic spin axes that form a right-hand coordinate system. Expand α and β to Fourier series

$$
(\alpha-i \beta)(s)=-i \frac{C}{2 \pi} \sum_{k} \frac{f_{k}}{k-\tilde{\nu}} e^{i 2 \pi k s / C}
$$

f_{k} : Fourier coefficients, related to the closed orbit and perturbing fields
Make additional orbit corrections using orbit bumps to reduce the rms tilt by minimizing the Fourier coefficients

Simplified HERA formalism

- Extract n_{0} direction at the end of all elements
- Expand $n_{0 x}(s)+i n_{0 z}(s)$ into Fourier series
- Minimize target coefficients using four bumps

$$
\begin{gathered}
n_{0 x}+i n_{0 z} \approx \sum_{k=-N}^{N} c_{k} \cdot e^{i 2 \pi k s / C} \\
c_{k}=\frac{1}{C} \int\left(n_{0 x}+i n_{0 z}\right) \cdot e^{-i 2 \pi k s / C} d s \approx \frac{\sum_{j=1}^{M}\left[n_{0 x}\left(s_{j}\right)+i n_{0 z}\left(s_{j}\right)\right] \cdot e^{-i 2 \pi k s_{j} / C}}{M}
\end{gathered}
$$

Response matrix

Each closed bump can be represented using a single variable, and each bump has an independent and linear contribution to the Fourier coefficients

$$
\mathbf{M K}=\mathbf{C}
$$

K: amplitudes (the first kick value) of the bumps
C: real and imaginary parts of the required harmonics coefficients [$c_{0 \text { real }}, c_{0 \text { imag }}, c_{1 \text { real }}, c_{1 \text { imag }}$]

If the harmonics 0 and 1 of a misaligned lattice is \mathbf{A}, the bumps should generate - A, and bump amplitudes can be estimated via inversing matrix

$$
\mathbf{K}=\mathbf{M}^{-1}(-\mathbf{A})
$$

Computing the response matrix

- Search for all possible locations in a perfectly aligned lattice
- Add one bump in one possible location
- Adjust 2nd and 3rd kicks to make y and $y p$ be all 0 outside the bump
- Analyze its contribution to the target harmonics
- Change the bump position and redo the analysis
- Select four bumps that build a matrix with the largest determinant
- Add four bumps into a misaligned machine with estimated bump amplitudes, and match the orbits to make bumps closed

Changes after adding bumps

- How does orbit change?
- Orbits outside of the bumps are unaffected.
- max $0.2 \mathrm{~mm} \Delta y$ within bumps is at the level of rms orbit of the effective lattice
- How does vertical dispersion change?
- $\left(\eta_{y}\right)_{\mathrm{rms}} 7.602 \mathrm{~mm} \rightarrow 7.675 \mathrm{~mm}, 0.96 \%$ increase
- $\left[\Delta \eta_{y}(s)\right]_{\mathrm{rms}}=0.4 \mathrm{~mm}$
- How does vertical emittance change?
- $\varepsilon_{y} 0.703 \mathrm{pm} \rightarrow 0.719 \mathrm{pm}, 2.16 \%$ increase

HERA formalism

At $45.82 \mathrm{GeV}(a \gamma=103.983)$

	$\left(\delta n_{0}\right)_{\mathrm{rms}}(\mathrm{mrad})$	Polarization (\%)
no correction	2.28	10.68
a set of four random bumps	0.912	90.58
optimized four bumps	0.9	90.96
a set of eight random bumps	0.903	90.79

Not necessary to use optimized locations, but better to have a symmetric layout

HERA formalism

Using 4 bumps which are optimized at $45.82 \mathrm{GeV}(a \gamma=103.983)$

Rossmanith-Schmidt scheme

Assume that spin precessions around vertical direction only happen in bending magnets, and the radial perturbing fields on the closed orbit only exist between bending magnets

$$
\begin{aligned}
& \left|\delta \vec{n}_{0}(s)\right|=\frac{1 / c^{2}}{2(1-\cos 2 \pi \nu)}\left[\left(\int_{s}^{s+L} \delta \Omega_{x} \cos \phi \mathrm{~d} s\right)^{2}+\left(\int_{s}^{s+L} \delta \Omega_{x} \sin \phi \mathrm{~d} s\right)^{2}\right] \\
& \delta \Omega_{x}=\frac{e}{m_{0} c \gamma}(1+a \gamma) B_{x} \text { and } \phi=\gamma a \alpha \\
& \text { also } \frac{e}{m_{0} c \gamma} \int_{s_{2 i}}^{s_{2 i+1}} B_{x}(s) \mathrm{d} s=-\Delta y_{i}^{\prime} \\
& \left|\delta \vec{n}_{0}\right|=\frac{1 / c^{2}}{2(1-\cos 2 \pi \nu)}(1+\gamma a)\left[\left(\sum_{i=1}^{N} \sin \left(\gamma a \alpha_{i}\right) \Delta y_{i}^{\prime}\right)^{2}+\left(\sum_{i=1}^{N} \cos \left(\gamma a \alpha_{i}\right) \Delta y_{i}^{\prime}\right)^{2}\right] \\
& \xrightarrow{2} \\
& \text { Ablenkmagnet } \\
& \begin{array}{l}
\text { Spindrehung um } \\
\text { (ie } Z \text {-Achse }
\end{array}
\end{aligned}
$$

Rossmanith-Schmidt scheme

Expand $\Delta y^{\prime}(\alpha)$ into Fourier series

$$
\begin{aligned}
\Delta y^{\prime}(\alpha) & =\sum_{k=1}^{\infty}\left(a_{k} \cos k \alpha+b_{k} \sin k \alpha\right) \\
a_{k} & =\frac{1}{N} \sum \Delta y_{i}^{\prime}\left(\alpha_{i}\right)_{\sin k \alpha_{i}}^{\cos k \alpha_{i}}
\end{aligned}
$$

The harmonics which are adjacent to $a \gamma$ contribute most to the sum. FCC-ee (Z) operates between $a \gamma 103$ and 104 , so that a / b_{103} and a / b_{104} are to be suppressed using four closed bumps.

Rossmanith-Schmidt scheme

$$
\begin{gathered}
45.82 \mathrm{GeV}(a \gamma=103.983) \\
\delta n_{0}: 2.28 \mathrm{mrad} \Rightarrow 0.90 \mathrm{mrad}, P_{D K}: 10.68 \% \Rightarrow 89.65 \%
\end{gathered}
$$

Rossmanith-Schmidt scheme

45.394 GeV $(a \gamma=103.016)$

$\delta n_{0}: 1.14 \mathrm{mrad} \Rightarrow 0.98 \mathrm{mrad}, P_{D K}: 59.66 \% \Rightarrow 87.35 \%$

Modified Rossmanith-Schmidt scheme

$$
\int B_{x}(s) \mathrm{d} s \propto-\Delta y^{\prime} \approx \sum_{i=1}^{N_{\text {quad }}} k_{1 i} y_{i} L_{i}+\sum_{j=1}^{N_{\text {Vkicker }}} \operatorname{kick}_{j}
$$

- Use $y_{\text {eff }}$ to avoid the errors from thin lens approximation $y_{\text {eff }} \approx \frac{1-\cos \sqrt{k} L}{\sqrt{k L} \sin \sqrt{k L}}\left(y_{1}+y_{2}\right)(k<0)$ or $y_{\text {eff }} \approx \frac{\cosh \sqrt{k L-1}}{\sqrt{k} L \sinh \sqrt{k L}}\left(y_{1}+y_{2}\right)(k>0)$
- If two BPMs are installed at both ends of each quadrupole Polarization $10.68 \% \rightarrow 84.71 \%$
- 3056 dipoles, 1856 quadrupoles \rightarrow fewer BPMs required

LEP method

Assume radial fields in quadrupoles and proportional to the beam position. Analyze unweighted vertical BPM readings and minimize critical harmonics

$$
\begin{aligned}
a_{k} & =\frac{1}{\pi} \sum_{i=1}^{N_{B P M}} y_{i} \cdot \Delta \theta_{i} \cdot \cos \left(k \cdot \theta_{i}\right) \\
b_{k} & =\frac{1}{\pi} \sum_{i=1}^{N_{B P M}} y_{i} \cdot \Delta \theta_{i} \cdot \sin \left(k \cdot \theta_{i}\right)
\end{aligned}
$$

If there is a BPM next to each quadrupole and functions properly

$$
\begin{gathered}
45.82 \mathrm{GeV}(a \gamma=103.983) \\
\delta n_{0}: 2.28 \mathrm{mrad} \Rightarrow 2.03 \mathrm{mrad}, P_{D K}: 10.68 \% \Rightarrow 13.72 \%
\end{gathered}
$$

Comparison

At $45.82 \mathrm{GeV}(a \gamma=103.983)$

Method	$\left(\delta n_{0}\right)_{r m s}(\mathrm{mrad})$	Polarization (\%)
no correction	2.28	10.68
HERA formalism	0.90	90.96
Rossmanith-Schmidt scheme	0.90	89.65
Modified R-S scheme	1.01	84.71
LEP method	2.03	13.72

Many questions remained regarding all three schemes

Pros and cons

1. HERA formalism

- Pro: systematic and rigorous mathematical derivation
- Con: empirically setting the bumps will be inevitable

2. Rossmanith-Schmidt scheme

- Pro: based on the acquisition of a more measurable quantity
- Con: BPMs at both ends of each dipole/quadrupole \rightarrow extra cost
- Con: restricted by BPM misalignments and calibration errors

3. LEP method

- Pro: based on the real observables
- Con: restricted by BPM misalignments and calibration errors

Outlooks

- Model the lattice using multiple larger error seeds, and estimate the maximum acceptable orbits that guarantee a sufficient polarization (collaborate with the FCC tuning group)
- Complete the harmonic spin matching schemes (collaborate with HSM experts)
- solve the remaining questions regarding the three schemes
- find an effective method that relies on the analysis of real observables
- test its effectiveness under different lattice conditions

Thank you!

Backup

Remained problems of HSM

- What's the harmonics that should be corrected in the simplified HERA formalism
- Whether there is a way to extract Δy^{\prime} information from vertical BPM readings in quadrupoles
- How to make LEP method work
- If it's possible to correct vertical resonance (not HSM)
- What will happen if the errors are much larger
- What will happen near other integers besides 103 and 104

Backup

	$\tau_{S T}$	$\tau_{B K S}$	$\tau_{\text {dep }}$	
FCC-ee $(\Delta y)_{\text {rms }}=72 \mu \mathrm{~m}$	11779 min	11773 min	$4.26 \times 10^{6} \mathrm{~min}$	90 min for 10% with wigglers (CDR)
HERA $(26.7 \mathrm{GeV})$	$\sim 43 \mathrm{~min}$	$\sim 40 \mathrm{~min}$	$\sim 10 \mathrm{~min}$	$\tau_{d k} \sim 8 \mathrm{~min}$
LEP	$\sim 310 \mathrm{~min}$ 46 GeV	-	$\sim 24 \mathrm{~min}$ 46.5 GeV	30 min for 10% no wigglers

in LEP $(\Delta y)_{\mathrm{rms}}=530 \mu \mathrm{~m},\left(\eta_{y}\right)_{\mathrm{rms}}=13 \mathrm{~cm}$

Backup

EPFL

$$
\mathrm{P}(\mathrm{t})=\mathrm{P}_{d k}\left[1-e^{-t / \tau_{d k}}\right]+P_{0} e^{-t / \tau_{d k}} \simeq P_{0} e^{-t / \tau_{d e p}}
$$

Backup

Systematic errors of the average beam energy determination

- Energy dependent momentum compaction
- Vertical orbit distortions (radial fields)
- Longitudinal fields

Backup

Maximum measured polarization in different storage rings with HSM (triangles) and without HSM (squares)
R. W. Assmann, et al. Polarization Studies at LEP in 1993. No. CERN-ALEPH-PUB-94-135. CM-P00061204, 1994.

Backup

Possible problems with LEP method

- radial fields not only exist in quads
- the radial field seen by the particle is not fully proportional to the y position
- even if it's proportional, each quad has different strength (ky)
- how much spin rotates is an integration of radial field within the element (kyL)

[^0]: FCC collaboration, "FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2", in European Physical Journal: Special Topics, 228, pp. 261-623, 2019.

[^1]: D. P. Barber, et al. "High spin polarization at the HERA electron storage ring." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 338.2-3 (1994): 166-184.

[^2]: * D. P. Barber, et al. "High spin polarization at the HERA electron storage ring." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 338.2-3 (1994): 166-184.

