

EPOL:The roadmap to the final report

Jacqueline Keintzel and Guy Wilkinson

On behalf of the FCC-ee EPOL working group

jacqueline.keintzel@cern.ch guy.wilkinson@cern.ch FCC Week 2023 London, United Kingdom June 08, 2023

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

FCC-ee Overview

- Particle Physics:
- Higgs and electro-weak factory
- 4 baseline beam energies and diverse particle physics program
 - 45.6 GeV: Z-pole
 - 80 GeV: W-pair-threshold
 - 120 GeV: ZH-production
 - 182.5 GeV: top-pair-threshold
- High number of statistics

Accelerator Physics:

- 4-fold super-symmetric layout
 - Up to 4 Interaction Points (IPs)
 - 1 RF-section per beam
 - 1 collimation section
 - 1 section for injection and dump
- Nanometer beam size at IPs
- Strong synchrotron radiation

Precision particle physics experiments (Center-of-mass energy determination

Center-of-mass Energy Uncertainty

- Error between measured and true E_{cm}
- Large effect on mass measurement
- Stems from systematic errors

- Fluctuation between measurements
- Large effect on resonance width measurements
- Stems from variability of measurement conditions

Expected Precision

	Quantity	statistics	ΔE_{CMabs}	$\Delta E_{CMSyst-ptp}$	calib. stats.	σE_{CM}
			100 keV	40 keV	$200 \mathrm{keV} / \sqrt(N^i)$	$(84) \pm 0.05 \text{ MeV}$
Z	m _z (keV)	4 4 2	100	28	1	_
	$\Gamma_{\rm Z} ({\rm keV})$		2.5	22	1	10
	$sin^2 \theta_W^{\text{eff}} \times 10^6 \text{ from } A_{FB}^{\mu\mu}$		_	2.4	0.1	_
	$\frac{\Delta \alpha_{QED}(M_Z)}{\alpha_{QED}(M_Z)} \times 10^5$	3	0.1	0.9	_	0.05
	Further clarification ongoing			300 keV	150 keV	
$WW \! \prec$	m _W (MeV)	0.200	(?)	75 ke'	√ ?	
	Γ _W (MeV)			(75?)	small	OK

- •Large expected luminosity → huge statistics → small statistical error: 4 / 100 keV per Z / W boson
- •Aim to achieve same order of magnitude for systematic errors → Scope of the EPOL working group
- •EPOL: Energy calibration, polarization and monochromatization

arXiv:1909.12245

How to?

Special mode: monochromatization

Detector input

Polarization build-up

Depolarization

Polarimetry

ECM

- Resonances
- Wigglers
- Beam tests

- Resonant depolarization
- Free spin precession

- Polarimeter incl.
- laser, Si-detectors
- e.g. EIC experience

- Systematic errrors
- Statistical errors
- Accurate models

Polarization Build-Up

- Statistically every 10¹⁰ emitted synchrotron photon flips the spin
- Probability depends on the initial spin orientation
- Leads to a natural polarization build-up over time
- Orientation is anti-parallel to the guiding magnetic field
- Maximum theoretical polarization of 92.4 %
- Spin precesses through the lattice → Spin tune

$$v = a * \gamma_{Rel}$$

a ... gyro-magnetic anomaly γ_{Rel} ... Lorentz-factor

Resonances and Orbit Bumps

- Polarization decreases with resonances, orbits, machine errors etc.
- Improved with special closed-orbit bumps

- Example: at 45.394 GeV → v = 103.016
- Maximum polarization improved from 60 to 87 %
- Requires orbit and angle measurement between dipoles

- What is the max. allowed closed orbit for polarization?
- How many BPMs are needed where, with which precision?
- Can this scheme be tested somewhere?

Courtesy: Y. Wu

Beam Test Polarization and Bumps

- KARA at KIT, polarization time ~ 10 min
- Polarization measurements via Touschek lifetime change

- Possible beam test:
- Generate strong depolarizing source
- Find orbit bumps to increase max. polarization

- Can FCC-ee orbit bumps be tested at KARA?
- Possible long term idea: Is it possible to install and test an FCC-like polarimeter?

sector 1 (one quarter)

Courtesy: B. Härer, E. Blomley

Wigglers

• Inject a few (100-200) non-colliding pilot bunches (~10¹⁰ ppb)

• Inject a few (100-200) non-colliding pilot bunches (~10¹⁰ ppb)

• Switch on wigglers until ~5-10 % vertical polarization reached

• Inject a few (100-200) non-colliding pilot bunches (~10¹⁰ ppb)

• Switch on wigglers until ~5-10 % vertical polarization reached

Switch wigglers off

• Inject a few (100-200) non-colliding pilot bunches (~10¹⁰ ppb)

• Switch on wigglers until ~5-10 % vertical polarization reached

Switch wigglers off and inject ~10⁵ colliding bunches (~10¹¹ ppb)

Inject a few (100-200) non-colliding pilot bunches (~10¹⁰ ppb)

Switch on wigglers until ~5-10 % vertical polarization reached

Switch wigglers off and inject ~10⁵ colliding bunches (~10¹¹ ppb)

Measure beam energy with pilots while collisions take place

- What is the minimum required polarization level?
- Which pilot bunch intensities are required?
- What is their lifetime and do they need to be topped-up?

Resonant Depolarization

Natural width ~ 200 keV at Z And 1.4 MeV at W

- Independent depolarizers per beam
- Easily accessible for maintainance
- TEM wave propagating towards a pilot bunch
- Varying exciting frequency

Exciting frequency = spin tune = depolarization

- Where is the best location for depolarizers?
- Do we need to scan in opposite directions simultanesouly? (2 depolarizers per beam?)

Free Spin Precession

- Stronger depolarizer kicks the vertical spin into other plane
- Observation of oscillation between these planes
- Spin tune obtained via Fourier Transform
- Yields the full spin spectrum

- Is this technique feasible in a realistic machine?
- How often should this be performed?
- Can we flip the spin and re-use the same bunches?

FSP at Z

Courtesy: I. Koop

Polarimeter

- In present experimental interaction region design space foreseen, but possibly more space in RF-section
- Where is the best integration point for the polarimeters?

Polarimeter

- ~ 520 nm circular polarized laser interacts with beam
- Back-scattered photons sufficient for resonance measurement
- Additional measurement of scattered electrons for 3D spin vector
- At least 1 polarimeter per beam

- What can be gained more polarimeters?
- Can we learn from other projects, such as from EIC-experts?

Scattered electrons to be measured by Si pixel detector

Courtesy: N. Muchnoi

Colliding Bunches Polarization

- Take away message:
- Longitudinal polarization could spoil measurements and must be < 10-5
- Depolarizers must also act on colliding bunches → Consider closed-orbit bumps to avoid impact at IP
- To be measured also with polarimeters
- What could be the impact of RF-kickers acting on colliding bunches?
- Which RF-kicker and polarimeter design is the most suitable for pilot and colliding bunches?

From Beam Energy to E_{CM}

- 40 MeV synchrotron radiation losses per turn
- Additional beamstrahlung (BS) (synchrotron radiation due to
- Same RF-section for both beams to compensate losses
- $\Delta E_{cm} \sim -8 \text{ keV (PA, PD)}$ and $\sim 0.7 \text{ keV (PG, PJ)}$
- Boosts ~ +/- 10 MeV (PA, PD) and ~ +/- 30 MeV (PG, PJ)
- Pilot and colliding bunches have different local energy
- Accurate models essential
- What are the systematics between pilot bunches and colliding ones?

Dispersion and Collision Offset

$$\Delta\sqrt{s} = -u_0 \frac{\sigma_E^2 \Delta D^*}{E_0 \sigma_u^2} \qquad \Longrightarrow$$

$$|\Delta\sqrt{s}| = 96 |u_0| [\text{keV/nm}]$$

for $\Delta D^* = 1 \mu m$, $\sigma_E/E = 0.13\%$

σ..... transverse beam size

u₀ ... collision offset

D... Dispersion

For $\Delta D^* = 10 \, \mu m$, the CM error is ~1 MeV/nm, i.e., the uncertainty on / average separation must be

below $u_0 < 0.1$ nm to limit the systematic errors < 100 keV.

- Measurement and control of dispersion and collision offsets at IP essential
 - $\Delta D < 1 \mu m$ relaxes requirements on collision offsets
- Can it be demonstrated that collision offsets can be controlled to $\sim 0.1\sigma_{v}$?
- How can we best measure dispersion at the IP? (RF-shift, orbit bump)

J. Wenninger: Beam-beam and OSVD

Experiments

- G. Wilkinson: Di-muon events "The gift that keeps on giving"
- Reliable and frequent logging of parameters essential
- Possibility to measure Z-bosons from higher E_{cm} events

Important message

All these results come from 'proof-of-principle' studies. They need to be repeated and consolidated with state-of-the-art ISR generators, proper simulation, realistic treatment of detector resolutions *etc.*, and extended to other fermion types and (in top regime) WW events. Many important & interesting studies to be performed!

One million di-muon events per 8h shift ~ 5 keV statistical precession achievable

10⁶ dimuon events at Z-pole: e+e- \rightarrow μ+μ- (γ) (γ)... Initial-State-Photon (ISR)

Monochromatization

- 62.5 GeV beam energy corresponds to the peak of Higgs-production with narrow width of 4.2 MeV
- For minimization of collision energy spread -> monochromatization techniques required
- What is the most suitable monochromatization technique and how can it be implemented?

Introducing dispersion

Courtesy: A. Faus-Golfe, H. Jiang and P. Raimondi

Introducing chromaticity

Non-zero local vertical chromaticity to reduce collision energy spread presently explored

Summary

• High precision particle physics experiments require excellent determination of E_{cm} and collision boosts

Presently aimed to achieve 4 / 100 keV systematic uncertainty for the Z- / W- mass -> EPOL

A lot of great results produced so far and summarized in the mid-term report and FCC-note

Many questions aimed to be answered until the end of the feasibility study, including beam tests

Regular EPOL meetings:

indico.cern.ch/category/8678/ Typically every second Thursday 16:30-18:30

Any help is welcome!

Mailing list:

fcc-ee-PolarizationAndEnergyCalibration@cern.ch

Self-subscription from:

https://e-groups.cern.ch/e-groups/EgroupsSearch.do

Thank you!

EPOL: The Roadmap to the final report

Jacqueline Keintzel and Guy Wilkinson

On behalf of the FCC-ee EPOL working group

jacqueline.keintzel@cern.ch guy.wilkinson@cern.ch FCC Week 2023 London, United Kingdom June 08, 2023

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

Algorithm for disentangling of SR and coherent losses

Two beam Energies in a detector E_e , E_p depend on beam currents I1, I2 (coherent losses) and on SR losses. These dependences can be parametrized via simple power law:

$$E_e = E1 + a1 \cdot (I1)^{\alpha} + b1 \cdot (E1)^{\beta}$$
 - where **E1, E2** - RD-energies; **I1, I2** - beam currents; $E_p = E2 + a2 \cdot (I2)^{\alpha} + b2 \cdot (E2)^{\beta}$ - where **E1, E2** - RD-energies; **I1, I2** - beam currents; α , β - the coherent and the SR power law degrees $a1$, $a2$, $b1$, $b2$ - unknown fit coefficients.

In our MC simulation we chose $\alpha=1$, $\beta=4$. Power law index α can be measured/fitted by interpolation of the closed orbit shift dependence on the current in high dispersion places near RF straight section (Jorg's remark at august 2022 EPOL meeting).

Energy boost:
$$E_e - E_p = E1 - E2 + a1(I1)^{\alpha} - a2(I2)^{\alpha} + b1(E1)^{\beta} - b2(E2)^{\beta}$$

N equations: $n=1, 2, ..., N$ with known $E1, E2; I1, I2; \alpha, \beta;$ and with unknown linear fit coefficients $a1$, $a2$, $b1$, $b2$. The reconstructed c.m. energy is a sum of beams energy: $E_{cm} = E_e + E_p = E1 + E2 + a1(I1)^{\alpha} + a2(I2)^{\alpha} + b1(E1)^{\beta} + b2(E2)^{\beta}$

Koop, saw tooth energy shifts

